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Notation

Throughout, N denotes a finite ground set with at least three elements. Elements
i, j, k, . . . ∈ N are identified with singleton subsets of N . Juxtaposition abbreviates
set union, so that ijK = {i} ∪ {j} ∪K ⊆ N . The symmetric difference of two sets is
A ⊕ B. The powerset of N is denoted 2N and the system of all k-element subsets is(
N
k

)
. The cardinality of N is denoted by n and when the set ifself is of no particular

relevance, we may suppose N = [n] := {1, . . . , n}.
Given a symmetric matrix (N×N)-matrix Σ, the principal minors are pI := det ΣI,I

for I ⊆ N , where p∅ := 1, and the almost-princial minors are aij|K := det ΣiK,jK for

ij ∈
(
N
2

)
, K ⊆ N \ ij.

Parentheses are omitted wherever possible, including at the application of a function
to its argument. Function application binds tighter than every operator, so fc ↗ c
should be read as f(c)↗ c.

– III –





1 Introduction

Notions of independence appear in many branches of Mathematics and the theory
of matroids ties seemingly unrelated independence concepts — or cryptomorphisms
thereof — in areas as diverse as linear algebra, graph, lattice and field theory, combi-
natorial optimisation or the study of semimodular functions, into an axiomatic frame-
work. However, matroids deal with a unary independence predicate “a subset I of
the ground set N is independent” and does not capture the independence of random
variables familiar from statistics, which is a binary relation: “the random variable
X is independent of Y ”, or the more general ternary relation of conditional indepen-
dence: “subsystems ξI and ξJ of a vector ξ of random variables are (conditionally)
independent, given the system ξK”.

This thesis is concerned with gaussoids, a combinatorial structure which originates
from probabilistic conditional independence relations among random variables with a
joint regular Gaussian distribution; see [Stu05, Chapter 2] for a brief introduction.
Thus these structures are concerned with the ternary kind of independence. Condi-
tional independence, however, is not purely a probabilistic concept. Similarly to the
multitude of unary independence relations in mathematical theories, ternary indepen-
dence relations arise in different areas, such as probability and graph theory, relational
databases or artificial intelligence [Pea88, PP85]. A unifying framework for these no-
tions is provided by the semigraphoid axioms.

This introduction briefly traces the path from general conditional independence
structures to localisable relations. The use of local relations is not merely a notational
detail, but facilitates a geometric interpretation of conditional independence relations.
Starting with Section 2 local relations are identified with collections of 2-dimensional
faces of the N -dimensional cube. This association provides the idea underlying our
main gaussoid construction method in Section 4.2. Therefore, it seems necessary to
justify the transition to local relations before gaussoids can be introduced.

For a finite ground set N and mutually disjoint subsets I, J,K of N , the triple
(I, J |K) is a (formal) conditional independence statement or CI statement for short.
TN denotes the set of all such triples, its subsets are called global CI relations. A global
semigraphoid S is a CI relation which satisfies the following axioms:

Triviality (I, ∅|K),

Symmetry (I, J |K)⇒ (J, I|K),

Decomposition (I, JL|K)⇒ (I, L|K),

Weak union (I, JL|K)⇒ (I, J |KL), and

Contraction (I, J |KL) ∧ (I, L|K)⇒ (I, JL|K),

for all mutually disjoint sets I, J,K, L of N , where every CI statement (I, J |K) ap-
pearing in the axioms is understood to be a short-hand for asserting its membership
(I, J |K) ∈ S. In this way, the axioms are Boolean formulae whose set of variables is
TN and whose satisfying assignments are the global semigraphoids.

These axioms are satisfied by all probability distributions when the symbol (I, J |K)
is interpreted as probabilistic conditional independence. Notably, all axioms take the

– 1 –



1 Introduction

form of inference rules. Semigraphoids are a formal model for reasoning about CI
inference.

A further property whose significance was highlighted by Matúš [Mat97] is local-
isability. To explain this term, the class of elementary CI statements AN has to be
introduced. It is the subset of TN containing all (I, J |K) where I = i and J = j are sin-
gleton sets. For the purpose of studying semigraphoids, by the Symmetry axiom, these
two sets commute in a CI statement, so that (i, j|K) might be regarded as a pair of sets
(ij|K) where ij is now a two-element set. Define AN := {(ij|K) : ij ∈

(
N
2

)
, K ⊆ N\ij}.

A global relation S ⊆ TN is localisable when it can be recovered from just its intersec-
tion with AN , in the following way:

(I, J |K) ∈ S ⇔ (I, J |K)? ⊆ S ∩AN ,

where (I, J |K)? := {(ij|L) ∈ AN : i ∈ I, j ∈ J,K ⊆ L ⊆ IJK \ ij}. The op-
eration of intersecting with AN is referred to as localisation. Global semigraphoids
are localisable [Mat92, Lemma 3]. This property conveniently reduces redundancy
in semigraphoids and simplifies notation as well as axiomatisation. The subsets of
AN which are localisations of global semigraphoids — those sets will simply be called
semigraphoids — can be axiomatised with just a single inference rule:

(ij|L) ∈ S ∧ (ik|jL) ∈ S ⇒ (ik|L) ∈ S ∧ (ij|kL) ∈ S

for all ijk ∈
(
N
3

)
and L ⊆ N \ ijk. In the remainder of this thesis, attention will be

restricted to local relations, i.e. subsets of AN .
Gaussoids are a special type of semigraphoid featuring stronger inference rules.

They were introduced by Lněnička and Matúš in [LM07] after preparatory work by
Matúš [Mat05]. As their name suggests, they are inspired by regular Gaussian prob-
ability distributions. Suppose ξ ∼ N (µ,Σ) is distributed according to a multivariate
regular Gaussian distribution with mean vector µ and positive-definite covariance ma-
trix Σ. Its conditional independence model 〈〈ξ〉〉 is the set of all CI statements which
hold for ξ. It can be shown that in the regular Gaussian case, this model is encoded
in the almost-principal minors of Σ:

(ij|K) ∈ 〈〈ξ〉〉 ⇔ det ΣiK,jK = 0,

where ΣA,B denotes the submatrix of Σ with rows indexed by A and columns indexed
by B. Determinants of submatrices are commonly called minors of the matrix. A minor
ΣK,K where rows and columns are indexed by the same set are principal, whereas
a minor ΣiK,jK where row and column indices differ by just one element is almost-
principal. Our notation AN for elementary CI statements, following [BDKS17], derives
from this instance.

In this way, one can define the CI model of a symmetric matrix Σ via 〈〈Σ〉〉 :=
{(ij|K) ∈ AN : det ΣiK,jK = 0}. Almost-principal minors are polynomials in the
entries of the matrix, hence the question of which CI relations arise from regular
Gaussian distributions becomes one of commutative algebra: “which sets of almost-
principal minors of a positive-definite matrix can simultaneously vanish?” Due to
this link, gaussoids received attention before or independent of their axiomatic defini-
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tion [Mat05, Šim06, Sul09]. Matúš’ fundamental result states

Theorem ([Mat05]). Let K,L ⊆ AN and A a complex symmetric matrix with non-
vanishing principal minors. The inference K ⊆ 〈〈A〉〉 ⇒ L ∩ 〈〈A〉〉 6= ∅ holds if and only
if fL ∈

√
IK.

Here, fL is the product of all almost-principal minors indexed by L, as a polynomial
in the entries of a generic symmetric matrix, and IK is a suitable ideal derived from K,
which incorporates the non-vanishing of principal minors. The “⇒” direction of this
theorem requires Hilbert’s Nullstellensatz, hence an algebraically closed field. However,
the other direction holds for every field. By choosing K and L appropriately and
proving the incidence of fL to

√
IK, this theorem allows the deduction of four inference

statements (G1)–(G4) which became the definition of gaussoid. Gaussoids arising from
a positive-definite matrix were called realisable for contrast.

As briefly mentioned, results on gaussoids around the time when the gaussoid axioms
were introduced concerned inference axioms for realisable gaussoids only. [LM07] enu-
merated the 3- and 4-gaussoids and classified them according to realisability. Following
parallels to matroid theory, [BDKS17] introduced oriented, positive and valuated gaus-
soids, and, among other things, enumerated the 5-gaussoids using SAT solvers.

There was no general construction method for non-realisable gaussoids and no es-
timate on the asymptotic number of gaussoids or their share among all CI relations.
These three points are addressed in this thesis.

The thesis is organised as follows. Section 2 introduces the gaussoid axioms, sym-
metries and gaussoid minors. N -gaussoids are viewed as sets of 2-dimensional faces of
the N -dimensional cube and minors correspond to a slicing operation on this cube.

Section 3 surveys two sources of gaussoids: matrices with non-vanishing principal
minors and undirected graphs. An exponential upper bound on the number of rep-
resentable gaussoids, due to Peter Nelson, is proved. The “N Theorem” 3.5 about
apr-sequences of gaussoids as well as a classification of simultaneously ascending and
descending gaussoids in Theorem 3.10 are new.

Section 4 is based on a known result, Lemma 4.1, which states that N -gaussoids
are exactly those CI relations whose proper minors are gaussoids themselves. Certain
graphs Q(N, k, p, q) are defined, whose connectivity encodes intersections of faces in
the N -cube and their key figures are derived. It is shown that independent sets in these
graphs generate a doubly exponential number of N -gaussoids. The same technique is
used to obtain a relative upper bound on the number of gaussoids, too. In the last
Section 4.4, the previous results are applied to the study of gaussoid closure. A minor-
based algorithm to construct gaussoid closures is presented. Two examples of badly
behaving CI relations are constructed: one with exponentially many closures in the
input size, and one with an exponentially large closure.
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2 Preliminaries

2 Preliminaries

2.1 The gaussoid axioms

To abstract the conditional independence inference statements which hold for regular
Gaussian distributions, Lněnička and Matúš [LM07] have introduced the notion of
a gaussoid. A gaussoid is a combinatorial structure defined inference rules for the
containment of squares.

Definition 2.1. A set G ⊆ AN is an N-gaussoid if it satisfies the following axioms for
all distinct i, j, k ∈ N and L ⊆ N \ ijk:

(ij|L) ∧ (ik|jL)⇒ (ik|L) ∧ (ij|kL), (G1)

(ij|kL) ∧ (ik|jL)⇒ (ij|L) ∧ (ik|L), (G2)

(ij|L) ∧ (ik|L) ⇒ (ij|kL) ∧ (ik|jL), (G3)

(ij|L) ∧ (ij|kL)⇒ (ik|L) ∨ (jk|L). (G4)

The collection of N -gaussoids is denoted GN .

These axioms are known as the semigraphoid axiom (G1), the intersection ax-
iom (G2) and its converse (G3), and weak transitivity (G4) [LM07, BDKS17].

Before beginning an analysis of the gaussoid axioms, we introduce geometric parlance
which is used throughout this thesis. The N-cube is the combinatorial hypercube QN

as a graph whose vertices {0, 1}N are the binary strings indexed by N with an edge
between two vertices if and only if their Hamming distance equals 1. A face of the
n-cube is a word in FN := {0, 1, ∗}N . The ∗ symbols are thought to indicate positions
which vary between 0 and 1. If w∗d denotes the number of ∗ symbols in a face d, then
this varying generates 2w∗d vertices in QN which span a w∗d-dimensional face of the
N -cube as a polytope. Hence this number is called the dimension of that face and
denoted dim d; the set of all k-dimensional faces, or k-faces, is FNk . Clearly the number
of k-faces of the N -cube is

(
n
k

)
2n−k and their counts sum up to exactly 3n. The two-

and three-dimensional faces are of principal importance. We refer to AN := FN2 as
the squares and to CN := FN3 as the cubes. For contrast, QN will always be called
“N -cube” or “hypercube”, if the parameter N is obvious from context or insignificant.

The symbol (I|K), for I,K ⊆ N disjoint, describes an |I|-face by making all positions
indexed by I into ∗ and all positions indexed by K into 1, leaving all others 0. Given
a face (I|K), we use K̃ to refer to N \ IK, i.e. the positions of the 0s. Given a face
x, we denote the index sets of ∗s, 1s and 0s respectively by Ix, Kx and K̃x. This
correspondence between words and pairs of disjoint index sets is used wherever it
simplifies notation. Thus we see that elementary CI statements (ij|K) correspond to
squares in the hypercube. Higher-dimensional faces of theN -cube become an important
indexing tool for gaussoids in Section 4.

Returning to the gaussoid axioms, we note that each of them is a Boolean formula
involving squares as variables, quantified over all ordered triples (i, j, k) and sets L.
There are 4 · 3!

(
n
3

)
· 2n−3 axioms defining n-gaussoids. The pair of sets (ijk|L) specifies

a cube containing all the squares which appear in the axioms. The ordering on the set
ijk permutes the axes of this cube. Figure 1 shows (G1)–(G4) in a Schlegel diagram
of the ijk-cube.
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2.1 The gaussoid axioms

∅ 1

3

2

Figure 1: The four gaussoid axioms (G1)–(G4) as inference rules in Schlegel diagrams
of the 3-cube for (i, j, k) = (1, 2, 3), L = ∅. Purple denotes the premises and
green the conclusions. The last axiom has alternative conclusions, which are
colored in different shades of green.

(a) (b)

Figure 2: (a) Any “knee” in the cube is completed to the unique “belt” which contains
it. (b) Two opposite squares are completed to (at least) one of the two belts
which contain them.

It is instructive to write down all 4 · 3! = 24 axioms for n = 3 and simplify them.
If the axioms are viewed as a set of rules on how to close a given set of squares to a
gaussoid, they boil down to two pictorially simple rules depicted in Figure 2, up to
symmetries of the cube. It is then easy to check that Figure 3 lists exactly the eleven
3-gaussoids.

The quantifiers around the gaussoid axioms make GN invariant under the action of
the symmetric group SN . This action furnishes a notion of isomorphy for gaussoids, as
defined in [LM07], but extended to the more general hypercube setting as follows:

Definition 2.2. Two sets of faces are isomorphic if they lie in the same orbit of the
SN action given on faces via σ(I|K) := (σI|σK). This relation is denoted ∼=.

The following lemma provides a practically useful necessary condition for (gaus-
soid) isomorphy. For 3-gaussoids it is also sufficient, that is, the isomorphy classes of
gaussoids in Figure 3 correspond to the levels in the poset, with the exception of the
singleton level, which splits into two further isomorphy classes.

Lemma 2.3. Besides the cardinality |H|, the vector (|{(I|K) ∈ H : |K| = k}|)k∈[n],
called the order histogram, is an invariant of the isomorphy class of a set of faces H.

Definition 2.4. The dual or opposite of a face (I|K) is (I|K)◦ := (I|K̃) = (I|N \IK).
The dual of (ij|) is abbreviated to (ij|∗) := (ij|)◦ = (ij|N \ ij). This definition is
extended element-wise to sets of faces.
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2 Preliminaries

Figure 3: The eleven gaussoids on n = 3 arranged in a poset with respect to inclusion,
from bottom up: the empty gaussoid, singletons, belts and the full gaussoid.

Duality is an involution on, and another symmetry of, gaussoids. Replacing every
variable in (G1)–(G4) by its dual axiomatises the duals of gaussoids. Again by the
∀-quantifiers around the axioms, this is just a permutation of the axioms, which shows
that gaussoids are indeed closed under duality. That duality is not a form of gaussoid
isomorphy follows from Lemma 2.3.

2.2 The hypercube and minors

It is well-known that the set of faces of the hypercube, as a polytope, forms a join
semi-lattice with respect to inclusion. It becomes a proper lattice if an artificial face ∅
is added in the obvious way as a smallest element. In this section, we present formal
tools which facilitate proofs by calculation in this lattice as well as computer imple-
mentations.

Definition 2.5. (1) A face (I|K) is included in another face (I ′|K ′), denoted (I|K) ⊆
(I ′|K ′), if the following conditions hold: (i) I ⊆ I ′, (ii) K ⊆ I ′K ′, and (iii) K̃ ⊆
I ′K̃ ′.

(2) The intersection of faces is (I|K) ∩ (I ′|K ′) := sup{d ∈ FN : d ⊆ (I|K) ∧ d ⊆
(I ′|K ′)} with respect to the lattice order ⊆ on faces. By convention, if the set
of faces under the sup is empty, the intersection is denoted ∅ 6∈ FN . Two faces
intersect when the intersection is not ∅.

(3) For a set H ⊆ FN , the set of faces which are included in some face (I|K) is
H ∩ (L|M) := {d ∈ H : d ⊆ (I|K)}.
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2.2 The hypercube and minors

The intuitive validity of these definitions rests on the consistency of inclusion as
defined above with the definition of inclusion in the face lattice. This is easily seen
to hold as the properties listed in Definition 2.5 (1) ensure that (I|K) ⊆ (I ′|K ′) is
equivalent to all extremal points of (I|K), which are the vertices of QN obtained by
varying the ∗ symbols indexed by I, lying in (I ′|K ′). This is enough since the faces of
a polytope are convex.

The intersection of faces and its dimension can be described in this calculus of pairs
of sets (I|K) as follows:

Lemma 2.6. The intersection (I|K) ∩ (I ′|K ′) is non-empty if and only if K ⊆ I ′K ′

and K ′ ⊆ IK. In this case it is given by (I|K) ∩ (I ′|K ′) = (I ∩ I ′|KK ′). Assigning
dimension −∞ to ∅, one has in particular

dim((I|K) ∩ (I ′|K ′)) =

{
−∞, (K ∩ K̃ ′)(K ′ ∩ K̃) 6= ∅,
|I ∩ I ′|, else.

Proof. Assume that K ⊆ I ′K ′ and K ′ ⊆ IK hold and consider the face s = (I ∩
I ′|KK ′). It is clear that Is = I ∩ I ′ is contained in both I-sets. Since K ⊆ I ′K ′

and K ′ ⊆ IK, we see that KK ′ ⊆ KKI ⊆ KI and KK ′ ⊆ K ′I ′K ′ ⊆ K ′I ′, so that
Ks = KK ′ ⊆ KI ∩ K ′I ′. Using K̃ ′ ∩ (N \ K) = K̃ ′ and K̃ ∩ (N \ K ′) = K̃ which
are implied by the assumption, one can show that K̃s = K̃K̃ ′, hence the containment
in both K̃-sets is analogous to the K-sets. Thus s is contained in both (I|K) and
(I|K ′). It is easy to see that there is only one face contained in both (I|K) and (I ′|K ′)
which achieves the maximal intersection dimension |I ∩ I ′|, namely (I|K) ∩ (I ′|K ′). If
K ⊆ I ′K ′ does not hold, then K ∩ K̃ ′ is non-empty. Pick some i ∈ K ∩ K̃ ′. A face s
contained in both faces, if it exists, cannot have a 0 or ∗ at i because i ∈ K. It cannot
have a 1 either because i ∈ K̃ ′. It follows that such a face s does not exist. The
argument is analogous if K ′ ⊆ IK is violated.

Corollary 2.7. For 3 ≤ k ≤ m, a k-face shares at most
(
k−1
2

)
2k−3 squares with an

m-face or is already included in it.

Proof. Let (I|K) be a k-face and (J |L) an m-face. If (I|K) and (J |L) do not intersect,
they do not share a square and the statement holds. If they intersect, the intersection
dimension is |I ∩ J |. Since k = |I| ≤ |J | = m, the intersection is at most k. If it
is exactly k, then the intersection is (I|K), hence (I|K) ⊆ (J |L). Otherweise the
intersection dimension is ≤ k − 1 and Qk−1 contains

(
k−1
2

)
2k−3 squares.

This result is especially useful in the case k = 3 where it reads “if a cube shares
more than a single square with an m-face, then it is already contained in it”. The
constructions in Section 4 based on Lemma 4.1 frequently exploit this special case
together with the fact that all singleton sets of squares are vacuously gaussoids. These
results require the notion of minor of a gaussoid which we introduce next.

Minors are an important concept in matroid theory. When a simple matroid is rep-
resented as the geometric lattice of its flats, minors correspond to intervals in that
lattice [Wel10, Theorem 4.4.3]. Our aim is to understand gaussoid minors analogously,
by replacing the geometric lattice cryptomorphism with the set of squares in the hyper-
cube and lattice interval with hypercube face. Our treatment focuses on sets of squares
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2 Preliminaries

because they bear a meaning for conditional independence, but the results generalise
to sets of faces of varying dimension.

First, we review definitions of minors found in the literature. Minors for arbitrary CI
structures have been studied for example in [Mat97]. There, a minor of a CI structure
is obtained by definition by choosing two disjoint sets L,M ⊆ N and performing
restriction to LM followed by contraction by N \ L, which are in symbols:

contrLA = {(ij|K) ∈ AL : (ij|K(N \ L)) ∈ A} ⊆ AL,

restrLA = A ∩AL ⊆ AL.

Minors of gaussoids were also defined explicitly in [BDKS17] using statistical termi-
nology with an emphasis on the parallels to matroid theory. A minor is every set of
squares arising from a gaussoid via any sequence of marginalisation and conditioning :

margLA = {(ij|K) ∈ A : L ⊆ N \ ijK} ⊆ AN\L,

condLA = {(ij|K) ∈ AN\L : (ij|KL) ∈ A} ⊆ AN\L.

One observes that these operations are indeed dual to the ones defined by Matúš:
condL = contrN\L and margL = restrN\L. Furthermore, either operation can be the
identity, restrN = id and contrN = id. Finally, the two sets L and M in Matúš’
definition of minor can be decoupled like this: contrLrestrLM = restrLcontrN\M . It
follows that both notions of minor coincide.

A face (L|M) of the N -cube is canonically isomorphic to the L-cube by deleting from
the N -cube {0, 1}N all coordinates outside of L. It is clear that this deletion operation
is a lattice isomorphism FN ∩(L|M)↔ FL. Let this canonical isomorphism be denoted
by π(L|M). We would like to interpret the minor restrLcondM as an operation in the
hypercube.

Proposition 2.8. Let A ⊆ AN , then restrLcondMA = π(L|M)(A ∩ (L|M)).

Proof. Take (ij|K ′) ∈ restrLcondMA. ij and K ′ can be seen as subsets of N and
then satisfy ijK ′ ⊆ L and (ij|K ′M) ∈ A. From this it is immediate that ij ⊆ L
and K ′M ⊆ LM . Furthermore, N \ ijK ′M = (N \ ijK ′) ∩ (N \M) ⊆ LM̃ , hence
(ij|K ′M) ⊆ (L|M) and (ij|K ′) ∈ π(L|M)(A ∩ (L|M)).

In the other direction, suppose that (ij|K ′) ∈ π(L|M)(A∩(L|M)) and let (ij|K) be its
preimage under π(L|M). Then (ij|K) ∈ A∩ (L|M) and it follows ij ⊆ L, K ⊆ LM and

also M ⊆ K because K̃ ⊆ LM̃ . Thus K decomposes into K = K ′M where naturally
K ′ ∩M = ∅. This proves that (ij|K ′) ∈ restrLcondMA.

Proposition 2.8 shows that faces of the hypercube provide a geometric intuition
and a compact encoding of established definitions of minor. The following definition
introduces notation reflecting this as well as an opposite operation called embedding,
which mounts a set of squares from the I-cube into an |I|-dimensional face of a higher
hypercube.

Definition 2.9. (1) For a set A ⊆ AN and (I|K) ∈ FNk , the (I|K)-minor of A is the
set A↘ (I|K) := π(I|K)(A ∩ (I|K)) ⊆ AI . A k-minor is an (I|K)-minor with |I| = k.

(2) For a set A ⊆ AI and (I|K) ∈ FNk , the embedding of A into (I|K) is the preimage
A↗ (I|K) := π−1(I|K)A ⊆ AN .
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2.2 The hypercube and minors

Some theorems in matroid theory are devoted to the characterisation of certain
classes of matroids — or the impossibility thereof — in terms of forbidden and com-
pulsory minors. We give the corresponding definitions for CI structures now. Gaussoids
will be examined from this point of view in Section 4.

Definition 2.10. (1) A class A ⊆ 2An of sets of squares is minor-closed if with A ∈ A
all minors of A belong to A.

(2) A set of squares X is a forbidden minor for a minor-closed class A if it is minimal
with the property that it does not belong to A, in the sense that all its proper
minors do belong to A.

(3) If there is a forbidden k-minor for some k, then all non-forbidden k-minors are
called compulsory k-minors for the class A.

The following algebraic relations involving the operations introduced in this section
are an easy exercise and their proofs are omitted.

Lemma 2.11. Let A be a set of squares, d a face and σ ∈ SN a permutation. Then
the following hold: (1) σA↘ σd = σ(A↘ d), and (2) A◦ ↘ d◦ = (A↘ d)◦.

We conclude this section with two trivial observations about embeddings and minors.
The first states that a family of sets of squares in various lower-dimensional hypercubes
can be simultaneously embedded into the N -cube in a unique way, provided that the
faces into which they are embedded are sufficiently far apart as to not intersect in any
face of dimension ≥ 2. The second result states that a set of squares of the hypercube
can be recognised by an array of its minors, provided that the faces which encode the
minors cover all squares of the hypercube. Both statements are used extensively in the
recursive construction of gaussoids in Section 4.

Lemma 2.12. (1) Let (dm)m∈M ⊆ FN be a family of faces of dimension at least 2 no
two of which share a square. Then every mapping α : M 7→ 2AIdm lifts uniquely to
a set of squares A :=

⊔
m∈M αdm ↗ dm ⊆ AN .

(2) Let (dm)m∈M be a family of faces such that every square of the hypercube is
contained in at least one of them. Then a set A ⊆ An is determined by the
family (H ↘ dm)m∈M .
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3 Gaussoids in mathematical structures

3.1 Realisable gaussoids

The interest in gaussoids originally arose from the study of CI inference among N
jointly regular Gaussian random variables. Conditional independence in this impor-
tant class of distributions can be characterised in terms of vanishing almost-principal
minors of the positive-definite covariance matrix. Based on this algebraic understand-
ing, Matúš [Mat05] proved a general inference rule for the set of vanishing almost-
principal minors of a symmetric positive-definite matrix, and, more generally, a sym-
metric complex matrix with non-vanishing principal minors, from which the gaussoid
axioms (G1)–(G4) could be deduced.

Definition 3.1. An N -gaussoid G is realisable if there is a positive-definite (N ×N)-
matrix A over R such that G = 〈〈A〉〉 := {(ij|K) ∈ AN : detAiK,jK = 0}. In this case,
the matrix A is called a realisation of G.

The definition of realisable gaussoids stems from the special significance of positive-
definite matrices in statistics. A more general definition uses matrices over an arbitrary
field. The proof of Matúš’ Theorem, quoted in the Introduction, generalises to symmet-
ric matrices with non-vanishing principal minors over an arbitrary algebraically closed
field. Since every field is contained in an algebraically closed field, this is enough to
infer that the gaussoid axioms are fulfilled by the vanishing set of almost-principal
minors of such matrices.

Definition 3.2. An N -gaussoid G is representable over a field F if there is a symmetric
(N ×N)-matrix A over F with non-vanishing principal minors such that G = 〈〈A〉〉. In
this case, the matrix A is called an F-representation of G. G is representable if it is
F-representable for some field F.

Gaussoids obey some of the inference rules for the vanishing almost-principal minors
of a suitable matrix, that is to say: every set of vanishing almost-principal minors of
such a matrix is a gaussoid, but the converse does not hold. Indeed, one can show that
the share of representable gaussoids among all gaussoids quickly tends to zero when
the dimension n increases. This result was suggested by Peter Nelson [Nel]. The first
part of the proof is

Lemma 3.3. Let G = 〈〈A〉〉 be an F-representable [n]-gaussoid. Then the (n × 2n)-
matrix [In|A], where In is the n × n identity matrix, defines via its columns an F-
representable matroid M over [2n]. The mapping G 7→M is injective.

Proof. The rank of B := [In|A] is clearly n, thus the matroid M is determined by its
non-vanishing maximal minors, as they indicate precisely the bases. The gaussoid G
is determined indirectly by the non-vanishing almost-principal minors of A. The proof
consists of providing a map from (ij|K) to an n-element subset L of [2n] such that the
(ij|K)-almost-principal minor of A is equal to the maximal minor with columns L of
B, up to a sign.

Define the set L := ([n] \ iK) ∪ (j + n) ∪ (K + n), where S + n is an element-wise
translation. We show that detAiK,jK = ± detB[n],L using Laplace expansions of the
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columns L∩ [n]. At the beginning, we have a submatrix of B with row indices [n] and
column indices L = ([n] \ iK) ∪ (j + n) ∪ (K + n). Since the ([n], [n])-submatrix of B
hosts the identity matrix, Laplace expansion of a column k ∈ [n] possibly changes a
sign in front of the determinant and deletes row and column k. After performing all the
Laplace expansions for columns L∩ [n], the rows which are left are [n] \ (L∩ [n]) = iK
and the columns L \ (L ∩ [n]) = (j + n) ∪ (K + n). Thus this submatrix is exactly
AiK,jK and the determinants coincide modulo sign.

This implies a singly exponential upper bound on the number of representable gaus-
soids, via a result by Nelson [Nel18], which states that the number of representable
matroids on [n], for n ≥ 12, is upper-bounded by 2n

3/4. In Section 4.3 we derive
a doubly exponential lower bound for the number of all gaussoids to complete the
proof of

Corollary 3.4. The share of representable n-gaussoids among all n-gaussoids tends
to zero, as n→∞, at least as quickly as 2cn

3−c′n2n for positive constants c, c′.

Having established that the representable, and in particular realisable, gaussoids
are relatively few, we turn to results on the difficulty of finding representations of a
gaussoid.

The realisability of a given N -gaussoid G is equivalent to the existence of a matrix
Σ = (σij) over R, whose principal and almost-principal minors we denote by pI and aij|K
respectively, which satisfies the system of equations, inequations and strict inequalities

σij = σji, ∀ i, j ∈ N,
pI > 0, ∀ ∅ ( I ⊆ N,

aij|K = 0, ∀ (ij|K) ∈ G,
aij|K 6= 0, ∀ (ij|K) ∈ An \G.

The set of matrices fulfilling these conditions is the realisation space of G. All expres-
sions which are constrained in the above system are polynomials in the entries of Σ,
hence the realisation space is a semi-algebraic set. The problem of deciding whether a
semi-algebraic set is empty or not is a decision problem in the existential theory of the
reals, which known to be decidable but NP-hard [BPCR16, Remark 13.10].

Another way to learn something about representable gaussoids is to group almost-
principal minors of a symmetric matrix over F by the size of their submatrices, called
the order of the minor, and to reduce each group to just the information whether None,
Some (but not all) or All of its almost-principal minors vanish. The string of n − 1
letters from the alphabet {N, S, A} which is defined in this way, for increasing order
1 ≤ k ≤ n − 1, is called the apr-sequence of the matrix. It was introduced recently
by Fallat and Mart́ınez-Rivera [FM18]. This sequence can be defined analogously for
a gaussoid G, where the order of a square (ij|K) is |K| + 1 and the k-th letter is N

if G contains all, S if G contains some (but not all), or A if G contains none of the
squares (ij|K) with |K| = k− 1. This definition is consistent with the apr-sequence of
a represting matrix, if G is representable.

One result regarding apr-sequences is the so-called NN Theorem, which states that
if the apr-sequence of a symmetric matrix contains two successive Ns, then all the
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following letters must be N. For the apr-sequences of gaussoids, an even stronger
“N Theorem” follows easily from the gaussoid axioms.

Theorem 3.5. The apr-sequence of a gaussoid G contains the letter N if and only if it
consists entirely of Ns. In other words, the only gaussoid whose apr-sequence contains
N is the full gaussoid.

Proof. Suppose that the N is at position ` with 1 ≤ ` ≤ n− 2. We show that the next
letter is N. Let (ij|kL) be an arbitrary square of order `+1. Then (ij|L) and (ik|L) are
squares of order ` and hence contained in G. Axiom (G3) implies that (ij|kL) belongs
to G. If N is at position ` for 2 ≤ ` ≤ n − 1, then it follows analogously using (G2)
that the previous letter is also N.

Besides the realisable gaussoids, R- and C-representable ones were discussed to some
extent in [Mat05] and then in [BDKS17]. The apr-sequences in [FM18] are treated over
arbitrary fields and no assumption is made about the principal minors. As far as the
author is aware, F-representable gaussoids for F of positive characteristic have not been
investigated directly. In the following, we restrict attention to realisable gaussoids, too.

Realisable gaussoids are a fairly robust class with respect to the operations on
gaussoids introduced in Section 2. For a permutation σ ∈ SN , one can check that
σ〈〈A〉〉 = 〈〈σAσT 〉〉, where σ is also used on the right-hand side to denote its permuta-
tion matrix. Duality corresponds to inversion of the matrix and it is shown in [BDKS17,
Proposition 2.6] how a representation of a minor can be derived by successive deletions
of rows and columns and taking Schur complements. All these operations preserve
positive definiteness. Thus a realisation of a gaussoid can be converted effectively into
a realisation for: any member of its isomorphy class, its dual or any of its minors.

All minors of a realisable gaussoid are realisable, hence the class of realisable gaus-
soids is minor-closed. The opposite of this is not true, i.e. there exist non-realisable
gaussoids all of whose minors are realisable — the forbidden minors for this class. A
characterisation of realisable 4-gaussoids was carried out by Lněnička and Matúš [LM07,
Corollary 5]; they give five additional “higher” inference axioms in the 4-cube, proving
that 629 of 679 gaussoids on n = 4 are realisable. Since all 3-gaussoids are realisable,
the forbidden 4-minors for realisability are exactly the 50 non-realisable 4-gaussoids.
Moreover, [Šim06, Theorem 3.2] exhibits an infinite list of forbidden minors. Thus new
non-realisable gaussoids with all realisable proper minors appear in arbitrarily large
dimension. The gaussoid axioms (G1)–(G4) refer only to variables i, j, k which are the
axes of a particular cube (ijk|L). To express this restriction, we say that gaussoids
are axiomatised in cubes. Since the number of realisable N -gaussoids is finite, they
can, for fixed N , be finitely axiomatised in the N -cube. Sullivant [Sul09] showed that
new CI inferences always arise in larger hypercubes and that some of them cannot be
axiomatised in smaller hypercubes. There is therefore no finite complete list of axioms
in a hypercube for the class of realisable gaussoids.
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Figure 4: The sub-poset of Figure 3 consisting of the eight separation graphoids on
n = 3. Three singletons are missing because of the ascension axiom. The
duals of separation graphoids have the other half of the singletons and are
otherwise the same.

3.2 Graphical gaussoids

Another class of CI models arises from simple undirected graphs by separation of two
vertices, also known as the global Markov property in undirected graphical models,
which appears here localised [Mat97] to single vertices i and j:

Definition 3.6. Let G be a simple undirected graph with vertex set N and (ij|K) ∈
AN . The set K separates vertices i and j in G if every path connecting i and j contains
a vertex in K. The corresponding CI structure

〈〈G〉〉 := {(ij|K) ∈ AN : K separates i and j}

is a separation graphoid.

In contrast to the class of realisable gaussoids, separation graphoids can be charac-
terised by axioms and this was carried out in [Mat97, Section 4]:

Theorem 3.7. The separation graphoids on N are exactly the sets of squares obeying,
for all distinct i, j, k ∈ N and L ⊆ N \ ijk:

(ij|kL) ∧ (ik|jL)⇒ (ij|L) ∧ (ik|L), (G2)

(ij|L) ⇒ (ik|L) ∨ (jk|L), (G4’)

(ij|L) ⇒ (ij|kL). (A)

In other words, they fulfill (G2), a stronger version of (G4) and the ascension ax-
iom (A).
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Under the ascension axiom, (G4) and (G4’) are equivalent. Axiom (G3) is trivially
implied by (A), and (G2) together with (A) imply (G1). Thus separation graphoids
might also be called ascending gaussoids or graphical gaussoids.

Figure 4 shows the separation graphoids on n = 3. By their axiomatisation, they

are minor-closed. It is known that there are exactly 2(n
2) separation graphoids on [n].

The argument is simple but provides some insight into the information encoded into
separation graphoids.

Proposition 3.8. The separation graphoids on N are in bijection with the simple

undirected graphs on vertices N . There are exactly 2(n
2) of them.

Proof. Every graph G defines a distinct separation graphoid S, so it suffices to show
that G can be reconstructed from the CI relation S. Since S is ascending, it is (ij|L) ∈
S for some L if and only if (ij|∗) ∈ S. But (ij|∗) 6∈ S means that there exists a path
between i and j which does not use any vertex in N \ ij. Such a path must be an
edge between i and j. Conversely, if this edge exists, it constitutes a path which avoids
every subset of N \ ij. Thus, the set of edges of G can be reconstructed by testing
(ij|∗) ∈ S.

Remark 3.9. The proof shows that there is an edge between i and j if and only if
(ij|∗) 6∈ 〈〈G〉〉. The other extremal CI statements (ij|) certify that every path between
i and j contains no vertex, i.e. that there is no path in G between i and j. Thus the
CI relation directly keeps track of edges and connected components.

Separation graphoids have even more structure. [BDKS17, Theorem 5.6] shows that
they are exactly the supports of positive gaussoids, a type of “gaussoid with coefficients”
analogous to positroids in matroid theory, and realisable. A realisation can be found
in terms of the graph’s adjacency matrix [LM07, Theorem 1].

The duals of ascending gaussoids are descending gaussoids. Indeed duality permutes
(G1)–(G4) under their quantifiers. The dual of axiom (A) is (ij|N\ijL)⇒ (ij|N\ijkL)
which, under ∀-quantifiers, is equivalent to

(ij|kL)⇒ (ij|L). (D)

There exist many examples which confirm the intuition that separation gaussoids are
not closed under duality. Theorem 3.10 provides a characterisation of the intersection
of separation graphoids and their duals which serves as a high-level proof of this.

Separation graphoids, or ascending gaussoids, can be equivalently defined by (ij|K) ∈
〈〈G〉〉 if and only if i and j are in different connected components of the graph G \K,
where the set of vertices K and all incident edges are removed from G. Dually, one
finds that (ij|K) ∈ 〈〈G〉〉◦ if and only if i and j are in different connected components
of the induced subgraph G[ijK].

This settles the action of duality on separation graphoids. Isomorphy is, as with rep-
resentable gaussoids, easy: a permutation σ ∈ Sn achieves a relabeling of the vertices,
σ〈〈G〉〉 = 〈〈σG〉〉. [Mat97, Lemma 3] describes procedures for modifying a graph, using
vertex deletion and the insertion of small cliques, to obtain graphical representations of
its minors. This shows that separation graphoids and their duals are effectively closed
under isomorphy and minors.
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n Gaussoids C-representable Realisable
Ascending/
Descending

Self-dual
Ascending ∩
Descending

3 11 11 11 8 5 5
4 679 679 629 64 39 15

5 60 212 776
≥ 39 775 176
≤ 55 489 560

≤ 43 276 644 1 024 8 276 52

6 — — — 32 768 16 045 982 029 203

n — ≥ 2
1
2
n(n−1)

≤ 22n3
≥ 2

1
2
n(n−1)

≤ 22n3 2
1
2
n(n−1) — Belln

Table 1: Exact counts and bounds on various types of gaussoids.

The class of simultaneously ascending and descending gaussoids has a rich structure:
besides fulfilling (A) and (D), all of them are self-dual and realisable. They arise from
partitions of the ground set.

Theorem 3.10. The simultaneously ascending and descending N -gaussoids are in
bijection with the partitions of N . Hence their cardinality is given by the Bell numbers.

Proof. Let G be an ascending and descending gaussoid. If any (ij|K) is in G, then
(ij|L) ∈ G for all L ⊆ N \ ij, that is, G is determined by all (ij|) ∈ G. Then we
may view G as a subset of N2 which, due to its origin in AN , does not contain (i, i)
for every i but is symmetric in that (i, j) ∈ G implies (j, i) ∈ G. Gaussoid axioms
(G1)–(G3) are trivial in the presence of ascension and descension axioms, and (G4)
becomes (ij|)⇒ (ik|)∨ (jk|). To summarise, among all subsets of N2, G obeys exactly
the following axioms for all distinct i, j, k:

(i, i) 6∈ G,
(i, j) 6∈ G⇒ (j, i) 6∈ G,

(i, k) 6∈ G ∧ (j, k) 6∈ G⇒ (i, j) 6∈ G.

Thus G is the complement of an equivalence relation on N .

Corollary 3.11. The number of realisable self-dual n-gaussoids grows at least as fast
as the Bell numbers.

#SAT solvers were employed in [BDKS17] to count the models of axiom systems
related to gaussoids. The idea is that ordinary n-gaussoids are defined by their 4 ·
3!
(
n
3

)
· 2n−3 axioms. When seen as a large conjunction of Boolean formulae in the(

n
2

)
2n−2 variables (ij|K) ∈ An, the assignments to these variables which satisfy the

formula describe exactly the n-gaussoids. A #SAT solver takes a Boolean formula as
input and outputs the number of satisfying assignments. Every gaussoidal structure
which can be axiomatised can be counted this way.

The ascending or descending gaussoids as well as the gaussoids which are both simul-
taneously are characterised in Proposition 3.8 and Theorem 3.10 respectively. Self-dual
gaussoids can be axiomatised by adding the implication (ij|K)⇒ (ij|N \ ijK), for all
ij ∈

(
N
2

)
and K ⊆ N \ ij, to the list of gaussoid axioms and running a #SAT solver on

the resulting formula.
Jörn Papenbroock [Pap] reported the bounds for C-representable 5-gaussoids as an

intermediate result of his work on [BDKS17, Challenge 8.5]. He uses a computer algebra
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system to compute the ideal of almost-principal minors which are contained in a given
gaussoid G, in a polynomial ring whose variables are the entries of a generic symmetric
matrix. Then this ideal is successively saturated with respect to the ideal of every
principal minor and every almost-principal minor outside of G. This method either
produces an empty variety which certifies non-representability over C or a non-empty
variety in which a generic point is a C-representation of G.

The upper bound on realisable 5-gaussoids was obtained from a #SAT solver using
the higher axioms for 4-realisability of [LM07] to axiomatise 5-gaussoids all of whose
4-minors (and trivially 3-minors) are realisable. This is an upper bound since the class
of realisable gaussoids is minor-closed.

#SAT computations were performed using Marc Thurley’s sharpSAT [Thu06]. The
methods and results reported here will become available at www.gaussoids.de.
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4 The recursive construction of gaussoids

4.1 Minor puzzles

One corollary to the gaussoid axioms is that the compulsory 3-minors of gaussoids
are exactly the 3-gaussoids, since the (ijk|L)-minor of a gaussoid satisfies exactly the
axioms (G1)–(G4) in the ijk-cube. The following lemma proves and extends this
observation to k-minors for all 3 ≤ k ≤ n. This property also holds for other local CI
structures, such as semi-, pseudo- and ordinary graphoids [Mat97, Proposition 1] as
well as separation graphoids, for the same reason, namely that they are axiomatised in
cubes.

Lemma 4.1. Let G ⊆ AN and 3 ≤ k ≤ n. Then G is an n-gaussoid if and only if
G↘ d is a k-gaussoid for every d ∈ FNk .

Proof. First consider the case k = 3. The axioms in Definition 2.1 are quantified over
arbitrary cubes (ijk|L) together with an order on ijk, and each axiom refers to squares
inside the cube (ijk|L) only. No matter the order of ijk, owing to Lemma 2.11 (1),
the axioms state precisely that this 3-minor is a 3-gaussoid.

The case of k > 3 is reduced to the statement for k = 3. Indeed all 3-minors
are gaussoids if and only if all 3-minors of k-minors are gaussoids, because those two
collections of minors are made from the same set of cubes of the n-cube.

As a consequence, we see that the class of gaussoids is minor-closed and that the
k-gaussoids are its compulsory k-minors, for all k ≥ 3. Forbidden and compulsory
minors supplement the axiomatic definition with a recursive one.

With Lemma 4.1, the construction of an n-gaussoid can be seen as a high-dimensional
self-similar puzzle. The puzzle pieces are lower-dimensional gaussoids, as many of each
as needed, which are to be embedded into faces of the n-cube. The difficulty comes
from the fact that every square is shared by

(
n−2
k−2

)
k-faces. The gaussoids must be

chosen so that all of them agree on whether a shared square is an element of the
n-gaussoid under construction or not. There are cases where k-gaussoids simply do
not fit together in neighbouring k-faces. Furthermore, Example 4.3 exhibits a pair of
n-gaussoids which, when embedded into opposite n-faces of the (n + 1)-cube, do not
permit fitting gaussoids to be assigned to all the other n-faces. At the point the failure

becomes apparent, a share of
2|Fn

2 |
|Fn+1

2 | = 1− 2
n+1

of all squares have already been assigned

to. Consequently, even though pieces appear to fit together locally, the puzzle might
not work out globally.

Lemma 2.12 (2) states that a collection of faces which cover all squares of the hy-
percube are enough to identify a set of squares via minors. But it is not sufficient for
attesting gaussoidity to verify that all minors given by a set of faces which cover all
squares are compulsory. For example, consider the set of cubes Cn \ c0 with an ignored
cube c0 ∈ Cn. This set certainly covers all squares but a set of squares, which is not a
gaussoid, can be constructed such that all c-minors for c ∈ Cn \ c0 are gaussoids. The
set H ↗ c0 ⊆ An is not a gaussoid if H ⊆ A3 is not a 3-gaussoid, as certified by the
minor H = (H ↗ c0) ↘ c0. All other 3-minors are either singletons or the empty
gaussoid by Corollary 2.7, which are vacuously gaussoids.

– 17 –



4 The recursive construction of gaussoids

As a first application of this Lemma 4.1, we prove that the number of gaussoids
grows at least exponentially.

Theorem 4.2. There are two disjoint embeddings of n-gaussoids into (n+1)-gaussoids,
hence |Gn+1| ≥ 2|Gn|.

Proof. The opposite n-faces d = 0∗n and d◦ = 1∗n of the (n+ 1)-cube do not intersect,
thus, by Lemma 2.12 (1), every pair in the set {(G, ∅) : G ∈ Gn}∪{(∅, G) : G ∈ Gn} lifts
to a set of squares of the (n+1)-cube. Let H denote one such set. We apply Lemma 4.1
with k = 3 to see that it is a gaussoid. Any cube c ∈ Cn+1 lies either completely in
d, completely in d◦ or is of the form c = ∗x where w∗x = 2. In the first case, and
analogously the second, the c-minor is a gaussoid because H ↘ c = (H ↘ d) ↘ c
and H ↘ d is a gaussoid. In the last case, c shares exactly one square, 0x, with d
and one, 1x, with d◦. Since only one square of the c-face belongs to a face to which a
non-empty gaussoid was assigned, the c-minor H ↘ c is empty or at most a singleton,
hence trivially a gaussoid. This concludes the proof that H is a gaussoid.

Apart from counting (∅, ∅) twice, all these gaussoids are distinct as an obvious con-
sequence of Lemma 2.12 (2). The lack of one gaussoid from counting (∅, ∅) twice can
be fixed by observing that the full set of squares An+1 is a gaussoid as well and does
not arise from any pair in the above construction.

It is worthwhile to consider improvements to this theorem. Since the two opposite
faces d = 0∗n and d◦ = 1∗n do not intersect, it seems possible to assign arbitrary pairs
(G,G′) ∈ G2

n to those faces. It cannot be expected that G↗ d tG′ ↗ d◦ is already a
gaussoid, but if a sufficient number of these pairs allow extension to unique gaussoids,
one would obtain a doubly exponential lower bound on the number of gaussoids. After
G and G′ have been prescribed into the (n + 1)-cube, one has to examine the cubes
outside of d and d◦, which are of the form ∗x with w∗x = 2. The set of these cubes,
denoted Bn+1, is in canonical bijection to An. Each cube c ∈ Bn+1 shares exactly
one square with each of d and d◦, namely 0x and 1x, and these squares oppose each
other in c. We say that a square in d or d◦ is activated if the prescribed n-gaussoid
contains the square and deactivated if it does not. The other squares, outside of d and
d◦ are initially undecided. There are then three cases for the activation status of the
two squares in c whose possible extensions by the laws depicted in Figure 2 partition
the set of 3-gaussoids:

none of them is activated this is already the empty gaussoid and possible extensions
are the four singletons activating each of the non-prescribed squares, or their union,
which is the unique belt avoiding the prescribed squares,

exactly one of them is activated this is already a gaussoid and there is no possible
proper extension as every 3-gaussoid with more than one activated square contains
the opposite of every activated square, which is forbidden here,

both of them are activated this is not a gaussoid and the possible extensions are
each of the two belts through the prescribed squares and their union, which is the
full gaussoid.
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Every square on d or d◦ belongs to a single cube in Bn+1 and every other square is
shared by (n − 1) cubes in Bn+1, and, again, the extensions picked for the cubes in
Bn+1 must all agree on the activation status of their shared squares. This is non-trivial
and one can find a number of pairs of n-gaussoids to embed into d and d◦ which do
not permit any gaussoid extension.

Example 4.3. For the n-face d = 0∗n, consider the set H := a ↗ d t An ↗ d◦ for
the full n-gaussoid An and a singleton a ∈ An. We show that there exists no gaussoid
H ′ ⊇ H such that H ′ ↘ d = a and H ′ ↘ d◦ = An.

To simplify notation, we may assume that ∗∗∗0n−2 is the cube in Bn+1 in which the
singleton activates a square, namely 0∗∗0n−2. Since the opposite square 1∗∗0n−2 is
activated from the full gaussoid, at least one of ∗∗00n−2 or ∗0∗0n−2 must be activated
by axiom (G4). By symmetry, we may assume that it is the former. Since n ≥ 3,
this square lies inside another cube, ∗∗0∗0n−3, where 1∗0∗0n−3 is activated by the
full gaussoid in d◦. The two activated faces in that cube intersect in an edge, hence
form a knee, which in turn forces the activation of the square opposite to 1∗0∗0n−3,
contradicting the assignment of just a singleton to d.

While some pairs yield no gaussoid extension, others yield multiple, but it is not ob-
vious whether a doubly exponential lower bound can be achieved. Instead of analysing
the inter-dependencies of squares in Bn+1, the next two sections derive a lower bound
on the size of sets of cubes which are sufficiently independent in the n-cube so that
puzzling arbitrary gaussoids into them does not create the need to check for agreement
on squares.

4.2 The graphs Q(N, k, p, q)

The technique developed in this section is used in the next section to derive a doubly
exponential lower bound and a doubly exponential relative upper bound, whose order
is optimal, on the number of gaussoids.

Definition 4.4. Let Q(N, k, p, q), for n ≥ k ≥ p ≥ q, be the undirected simple graph
with vertex set FNk and an edge between d, f ∈ FNk if and only if there is a p-face s
such that dim(d ∩ s) ≥ q and dim(f ∩ s) ≥ q.

Pictorially, an edge exists between k-faces d and f when there is a p-dimensional
“bridge” which requires q anchor dimensions on either side. For suitable choices of
p and q, the faces in independent sets in these graphs will be just far enough away
from each other in the hypercube to allow the compatible assignment of arbitrary k-
gaussoids to them. The proof is then analogous to Theorem 4.2. Before we can execute
this plan, a study of these graphs is necessary. The main result of this section is

Theorem 4.5. The graph Q(N, k, p, q) is transitive, hence regular. It is complete if
and only if n+ q ≤ p+ k. The degree of any vertex can be calculated as follows:

degQ(N, k, p, q) = −1 +
∑
m,j (†)

(
k

j

)
2k−j

(
n− k
k − j

)(
n− 2k + j

m

)
,
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(a) Q(5, 3, 2, 2) (b) Q(5, 3, 3, 2)

Figure 5: Two graphs of the form Q(5, 3, p, q). Both are regular graphs with 40 vertices.
(a) has p = q = 2 and degree 12, and (b) has p = 3, q = 2 and degree 38.
Green vertices exhibit a maximal independent set.

where the sum extends over pairs (m, j) ∈ [n−k]× [k] which satisfy the feasibility and
connectivity conditions

n− 2k + j ≥ m ∧ p ≥ m+ 2q −min{q, j}. (†)

Proof. The textbook proof for the transitivity of the hypercube Qn found in [GR01,
Lemma 3.1.1] extends in the following way. For π ∈ SN and X ⊆ N , define the
mapping φ = φπ,X : (J |L) 7→ π(J |(X \ J) ⊕ L). This map is a translation mod 2 in
the (L ∪ L̃)-cube inside the N -cube, followed by a permutation of the N -cube, hence
a bijection. It is clear that for any pair of faces there is a mapping of this form which
carries one to the other. To see that φ is an automorphism, it suffices to prove that
φ(d ∩ f) = φd ∩ φf . Because φ preserves dimension, it then follows that if d and s
share a q-face, then φd and φs share a q-face as well. Applying this observation twice,
namely to d, s and s, f , in the situation where d and f are connected by a p-face s
shows that φ preserves edges in Q(N, k, p, q). The critical property that φ commutes
with intersection is proved in Lemma 4.6.

The characterisation of completeness rests on Lemma 4.7. Using the gap function ρq
defined there, it is shown that ρq(d, f) ≤ p is equivalent to the adjacency of d and f in
Q(N, k, p, q) and that adjacency is inherited along decreasing gap. Since Q(N, k, p, q)
is regular, it is complete if and only if some vertex is adjacent to all others. For that to
happen, the vertex must be adjacent to one which has the largest gap to it. As shown
in the lemma, the maximum of ρq is n− k+ q and hence completeness is equivalent to
n− k + q ≤ p.

The exact degree also follows from Lemma 4.7. Since the graph is regular, we may fix
any vertex d and count the adjacent faces f by their parameters m = |(Kd⊕Kf )\IdIf |
and j = |Id ∩ If | relative to d. A priori, m ranges in [n − k] and j ranges in [k], but
not all of their combinations allow f to be a k-face which is adjacent to d. First, we
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determine the pairs (m, j) for which an adjacent k-face exists and then count how many
of them exist for fixed parameters. Let (m, j) ∈ [n − k] × [k] be given. When j ∈ [k]
is small, few ∗ symbols are shared between d and the hypothetical face f . For the ∗s
of f to share exactly j ∗s with d, it must hold that n ≥ 2k − j. Once this is given, a
k-face f can be constructed if and only if the non-shared ∗s of size k − j leave enough
0s and 1s available to create the prescribed disagreement of size m between the two
faces. As an inequality this means n− k ≥ m+ (k − j), or n− 2k + j ≥ m. Together
with m ≥ 0, this inequality already entails the condition n ≥ 2k − j imposed by the
choice of j. Thus it is sufficient to require only n− 2k + j ≥ m, which is the left half
of (†). Given a k-face f with parameters m and j, the existence of an edge between d
and f in Q(N, k, p, q) further imposes the condition Lemma 4.7 (1), which is the right
half of (†).

Now let d be a fixed k-face and let (m, j) ∈ [n − k] × [k] satisfy (†). We count the
possibilities to construct a k-face f with parameters m and j. There are

(
k
j

)
ways to

place the j ∗ symbols shared by d and f . On the remaining k− j positions where d has
∗s, f can hold anything but ∗s without affecting the intersection dimension, so there
are 2k−j independent choices. f is now defined on all positions in Id. There are k − j
∗s which have to be placed in KdK̃d in order to make f a k-face and there are

(
n−k
k−j

)
choices. After this choice, If is fully defined and we may only place 0s and 1s anymore
in the set N \ IdIf where d has only 0s and 1s as well. Among the remaining n−2k− j
positions, a set of size m must be chosen, where f is already determined by having to
differ from d. On the remaining n− 2k − j −m positions, f is determined by having
not to differ from d. Note that the feasibility of all the choices enumerated above is
guaranteed by (†). They sum up to∑

m,j (†)

(
k

j

)
2k−j

(
n− k
k − j

)(
n− 2k + j

m

)
,

and since d is not adjacent to itself, which is uniquely described by the feasible pa-
rameters j = k and m = 0, we have to subtract 1 from this sum, which concludes the
proof, barring the two lemmata.

Lemma 4.6. Let φ = φπ,X as defined above. Assume ∅ 6= s = d∩f , then φs = φd∩φf .

Proof. Using Lemma 2.6, it is easy to see that if d and f intersect, then φd and φf
intersect. We prove that the two components of φs coincide with the description of
φd ∩ φf given in that lemma. The assumption that d and f intersect in s provides:

Is = Id ∩ If , (1)

Ks = Kd ∪Kf , K̃s = K̃d ∪ K̃f , (2)

Kd ⊆ If ∪Kf , Kf ⊆ Id ∪Kd. (3)

The first component of φs is: πIs = π(Id ∩ If ) = πId ∩ πIf = Iφd ∩ Iφf = Iφd∩φf . The
second component requires a lengthier calculation involving only the facts cited above
and elementary laws of set operations.
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Lemma 4.7. For two k-faces d, f of the hypercube, define ρq(d, f) := m + 2q −
min{q, j}, where m = |(Kd ⊕Kf ) \ IdIf | and j = |Id ∩ If |. The following hold:

(1) ρq(d, f) ≤ p holds if and only if d and f are adjacent in Q(N, k, p, q),

(2) the range of ρq is [q, n− k + q],

(3) ρq is strictly isotone with respect to q, i.e. ρq < ρq+1,

(4) for d, d′, f ∈ Fnk with ρq(d, d
′) ≤ ρq(d, f), if d and f are adjacent in Q(N, k, p, q),

then so are d and d′.

Proof. Given two k-faces d and f , the ground set N splits into three sets: (i) (Kd ⊕
Kf )\IdIf of cardinality m where both have 0 and 1 symbols only but differ, (ii) Id∩If
of cardinality j of shared ∗ symbols, and (iii) everything else, i.e. positions where 0

and 1 patterns agree or where 0 and 1 in one face are against ∗ in the other. In
order to connect two k-faces in Q(N, k, p, q), there needs to be a p-face which intersects
either of them in at least q dimensions. Such a face necessarily has to cover the set
of size m with ∗s, as it will not intersect both of them simultaneously with any other
choice. Conversely, once m is covered, a 0-dimensional intersection with both faces is
ensured by placing 0s and 1s appropriately. To achieve a q-dimensional intersection,
q-many ∗s have to be placed on Id and If each. By using the j shared ∗s, one needs
at least 2q − min{q, j} further ∗s to construct a connecting p-face. Thus ρq(d, f) is
the minimum dimension p necessary to connect d and f in Q(N, k, p, q). This proves
claim (1).

It is clear that ρq is minimal when m is minimal and j is maximal. This can be
achieved simultaneously by choosing f = d and there we have ρq(d, d) = q. Now
consider the dual face d◦ = (Id, N \ KdId) of d. The gap is ρ(d, d◦) = |N | − |Id| +
2q−min{q, |Id|} = n− k+ q assuming d is a vertex of Q(N, k, p, q) where in particular
|Id| = k ≥ q. Increasing this value would require reducing j since m is already maximal.
Un-sharing ∗s with d consumes positions inside the block of 0s and 1s in d of size n−k
which reduces m by an equal amount. Hence n − k + q is maximal. Furthermore, by
varying m but keeping j = k, all values in the range [q, n − k + q] can be attained,
proving claim (2).

Claim (3) follows from a straightforward calculation:

ρq+1(d, f)− ρq(d, f) = 2− (min{q + 1, j} −min{q, j})

=

{
2, j ≤ q,

1, j ≥ q + 1.

In particular, this inequality reinforces that ρq(d, f) ≤ p characterises the existence of
a p-face which shares at least a q-dimensional intersection with both d and f , hence
the presence of an edge in Q(N, k, p, q).

In the situation of claim (4), since d and f are adjacent in Q(N, k, p, q), we have
ρq(d, d

′) ≤ ρq(d, f) ≤ p by (1). Applying the same property in reverse proves the
claim.

While the formula given in Theorem 4.5 is easy to evaluate, it is not “closed enough”
to be useful in its generality for the applications of Q(N, k, p, q) to the construction
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of gaussoids. Instead, we compute the degree explicitly for parameters which fit our
needs:

Corollary 4.8. (1) Q(n, 3, 2, 2) is complete for n ≤ 3. Otherwise its degree is 6(n−3)
≤ 6(n− 2).

(2) Q(n, 3, 3, 2) is complete for n ≤ 4. Otherwise its degree is 12(n − 3)(n − 4) +
7(n− 3) ≤ 12(n− 1)(n− 2).

4.3 Bounds on the number of gaussoids

As briefly outlined before Theorem 4.5, we can use independent sets in Q(N, k, p, q) to
construct gaussoids and also non-gaussoids. The central technique is presented in

Proposition 4.9. Let F be an independent set in Q(N, k, 3, 2), then the following
inequality holds: |Gn| ≥ |Gk||F|.

Proof. Let d, f ∈ F. Since F is independent, there is no c ∈ Cn which shares a square
with d and with f . Since d as a k-face with k ≥ 3 contains a cube, this implies that d
and f do not share a square. Thus an assignment α : F → Gk lifts to a set of squares
G :=

⊔
d∈F αd↗ d ⊆ AN . The mapping α 7→ G is injective.

To see that G is a gaussoid, we examine its 3-minors. Let c ∈ Cn be arbitrary. In case
c is fully contained in some d ∈ F, then clearly G↘ c = (αd↗ d)↘ c = αd↘ c ∈ G3

since αd ∈ Gk. Otherwise, because of Corollary 2.7, c can share at most one square
with any face in F. If it shares no square with any element of F, then G↘ c is empty,
hence a gaussoid. If it shares a square with some face in F, it cannot share a square
with any other element of F because F is an independent set in Q(N, k, 3, 2). In this
case, G↘ c is a singleton and hence a gaussoid.

Proposition 4.10. Let F be an independent set in Q(N, k, 2, 2) and denote by c the
maximum size of a collection of mutually range-disjoint injections of Gk into 2Ak \Gk.

Then 2|An|

|Gn| ≥ c|F|.

Proof. The proof is analogous to Proposition 4.9 but uses the independent set to per-
turb any gaussoid injectively into c|F| non-gaussoids. Again, since q = 2 and F is
independent, an assignment α : F → 2Ak lifts uniquely via ↗ to a subset of AN . Let
{fi}i∈[c] be a set of range-disjoint injections as indicated in the claim. Consider the
maps α′ : F → [c]. To each G ∈ Gn associate Hα′ :=

⊔
d∈F fα′d(G↘ d)↗ d ⊆ AN .

Because the ranges of fis are disjoint, the mapping (G,α′) 7→ Hα′ is injective. None
of the sets Hα′ is a gaussoid since any d ∈ F certifies Hα′ ↘ d = fα′d(G↘ d) 6∈ Gk.

Remark 4.11. The proofs of Propositions 4.9 and 4.10 exploit two properties of the
class

⋃
n≥3Gn of gaussoids: (1) they have a recursive puzzle property, Lemma 4.1, which

is strictly stronger than being minor-closed, and (2) the empty set and all singletons
on n = 3 are gaussoids. The same technique does not work for realisable gaussoids
because they lack property (1) and not for separation graphoids because they lack
property (2), and indeed Section 3 shows that these two classes cannot have a doubly
exponential lower bound on their size.
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We apply these propositions for k = 3. To find fairly large independent sets in
Q(n, 3, 3, 2) and Q(n, 3, 2, 2), we can use Brooks’ Theorem [Lov75] and the degree
bounds from Corollary 4.8. By the former, since the graphs are connected, have de-
gree at least 3 but are not complete, there exists a proper degQ(n, 3, 3, 2)-coloring of
Q(n, 3, 3, 2), which shows the existence of an independent set, as one color class of this
coloring, whose size is at least that of an average color class:

|Fn3 |
degQ(n, 3, 3, 2)

≥ n(n− 1)(n− 2)

6 · 12(n− 1)(n− 2)
2n−3 =

n

62
2n−4 =

n

9
2n−6.

For Q(n, 3, 2, 2), we find analogously

|Fn3 |
degQ(n, 3, 2, 2)

≥ n(n− 1)(n− 2)

6 · 6(n− 2)
2n−3 =

n(n− 1)

62
2n−3 =

n(n− 1)

9
2n−5.

The obtained quantities can be rounded upwards to integers. Not doing so still gives
a lower bound on the size of an independent set. Proposition 4.9 hence shows, using
|G3| = 11 and log2 11 ≥ 3, that there are at least 11

n
9
2n−6 ≥ 2

n
3
2n−6

n-gaussoids.
Similarly, Proposition 4.10 with c =

⌊
64−11
11

⌋
= 4 gives an upper bound on the ratio of

n-gaussoids of 4
n(n−1)

9
2n−5

= 2
n(n−1)

9
2n−4

. Thus we have proved

Theorem 4.12. For n ≥ 5, the number of n-gaussoids is bounded by 2
1
3
n2n−6 ≤ |Gn| ≤

2|An|/2
4
9
n(n−1)2n−6

.

These bounds are bad for small n. They apply, even though the statement of the
theorem does not reveal this, for n < 5 too. We contrast them below with the exact
numbers of n-gaussoids from Table 1 for n ≤ 5. The bounds are rounded to integers
and far-away bounds displayed in exponential notation with truncated mantissa:

2 ≤ 11 ≤ 50,

2 ≤ 679 ≤ 665 · 104,

2 ≤ 60 212 776 ≤ 555 249 992 · 1014.

The relative upper bound in Theorem 4.12 implies that the expected running time of
a randomised algorithm for generating gaussoids, by guessing sets of squares uniformly
and checking the gaussoid axioms on them, is at least doubly exponential in n.

Remark 4.13. Improvements on the constants from Brooks’ Theorem are possible
using methods of coding theory and combinatorics. Observe that sets of vertices in the
graphs Q(N, k, p, q) are special languages over the ternary alphabet {0, 1, ∗}, in which
every word must contain the ∗ symbol exactly k times. However, notions of coding
theory, such as Hamming distance, do not directly relate to the interpretation of the
graph. The ∗ symbol expresses varying between 0 and 1 and should not contribute
to a notion of distance between faces, hence one defines the projection Ed,f for two
k-faces d, f which deletes from its input word all positions in IdIf . Ed,fd and Ed,ff
are words over {0, 1}. The Hamming distance of their projections is an appropriate
measure of distance between words in our situation. This quantity appeared already
in Lemma 4.7 as m := |(Kd ⊕Kf ) \ IdIf | = w1(Ed,fd⊕ Ed,ff), where the last term is
the classical Hamming distance over {0, 1} ∼= F2.
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For example, consider d, f ∈ Fn3 as vertices in Q(n, 3, 3, 2). By Lemma 4.7, two
sufficient conditions for them not being connected by an edge are: (a) j = 3 and
m ≥ 2, or (b) j = 0 and m arbitrary. The case of j = 3 means Id = If . It is an
easy exercise to construct a binary code Dn−3 of length n − 3 and minimum distance
2 which has the maximum cardinality 2n−4 for its prescribed minimum distance. The
set F0 := {∗∗∗x : x ∈ Dn−3} is then independent in Q(n, 3, 3, 2) of size 2n−4. Denoting
by cyrk the cyclic right-shift of a word by k symbols: cyr(x′x1 . . . xk) := x1 . . . xkx

′,

we construct F :=
⋃bn/3c−1
k=0 cyr3kF0 which remains independent because j = 0 for

every pair of faces which come from different shifts of F0. This independent set has a
cardinality of

⌊
n
3

⌋
2n−4. Constructing an independent set in Q(n, 3, 2, 2) leads to similar

combinatorial challenges.

We leave further improvements of the constants for future work and instead con-
centrate on the polynomial order of n in the exponent in both bounds. Substituting
the size |An| =

(
n
2

)
2n−2 in the relative upper bound gives an interval for the absolute

number of n-gaussoids for n ≥ 5, which shows that log |Gn| ∈ Ω(n2n) ∩ O(n22n). It
seems difficult to find better bounds on the polynomial order of n in the two interval
endpoints. We conclude this section by showing that the linear order lower bound is
indeed the limit of the independent set construction in Q(n, 3, 3, 2). The independence
number αG of a graph G is the maximal size of an independent set in G. Similarly, the
clique number ωG is the maximal size of a clique in the graph G. Since Q(n, 3, 3, 2) is
transitive, the following inequality holds [GR01, Lemma 7.2.2]:

αQ(n, 3, 3, 2) ≤ |Fn3 |
ωQ(n, 3, 3, 2)

.

Since |Fn3 | ∈ Θ(n32n), it suffices to find a clique of size Ω(n2) in every Q(n, 3, 3, 2). Take
the set of cubes J := {(1ij|) : ij ∈

(
[n]\1
2

)
}. This set has cardinality

(
n−1
2

)
∈ Θ(n2) and

any two elements d = (1ij|), f = (1kl|) in it are connected by an edge in Q(n, 3, 3, 2),
since ρ2(d, f) = m+ 2 · 2−min{2, j} = 4−min{2, j} ≤ 3 with m = 0 and j ≥ 1.

4.4 On the problem of gaussoid closure

In this section, we apply some of the earlier results and construction methods to present
badly behaving examples related to gaussoid closure.

A fundamental operation for many kinds of mathematical structures is that of clo-
sure, i.e. to find the smallest or freest object from a certain class which contains a
given object, such as the smallest linear subspace of a vector space containing a set of
vectors. The class of n-gaussoids is not closed under union, for example, as suggested
by their interpretation as inference structures; indeed, the union of two distinct sin-
gletons in the same 3-face is never a gaussoid. A notion of gaussoid closure could be
applied in this case to get a replacement for the union — the smallest set of squares
containing both gaussoids, which is itself a gaussoid. The common definition of a clo-
sure takes the intersection of all extensions of the given object, but this does not work
for gaussoids, because they are not closed under intersection. This is a consequence of
the two alternatives in the gaussoid axiom (G4): the intersection of any two distinct
belts in the set of 3-gaussoids produces a 2-element set of squares in the 3-cube, which
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is not a gaussoid. This phenomenon is unlike other CI inference structures such as
semigraphoids, which, by their axioms, are closed under intersection and hence have a
closure operator.

Definition 4.14. For a set of squares A ⊆ An, a gaussoid G ⊇ A is a gaussoid
extension of A. If G is additionally inclusion-minimal among all gaussoid extensions,
it is a gaussoid closure.

The following example shows that there is indeed no unique gaussoid closure. Neither
the isomorphy class nor the number of squares must coincide for two different gaussoid
closures of a set of squares.

Example 4.15. (a) Consider the set of squares A = {∗∗000, ∗∗100, ∗01∗0, 1∗00∗}.
The first two squares oppose each other in the cube ∗∗∗00 and hence fulfill the premise
of axiom (G4). One of the alternatives mandated by this axiom lies in the same cube
as ∗01∗0 and the other in the same cube as 1∗00∗. By repeated application of the
gaussoid axioms, or Algorithm 1 introduced below, one finds that A has two minimal
gaussoid extensions. To display them, we list their squares in groups corresponding to
the 3-minors, repeating squares for each cube they appear in. Singleton and empty
minors are omitted from the listing.

G1 =

∗∗∗00 : ∗∗000, ∗∗100, 0∗∗00, 1∗∗00,
∗∗∗01 : ∗∗001, ∗∗101, 0∗∗01, 1∗∗01,
∗∗1∗0 : ∗∗100, ∗∗110, ∗01∗0, ∗11∗0,
∗∗00∗ : ∗∗000, ∗∗001, 0∗00∗, 1∗00∗,
∗∗10∗ : ∗∗100, ∗∗101, 0∗10∗, 1∗10∗,
0∗∗0∗ : 0∗∗00, 0∗∗01, 0∗00∗, 0∗10∗,
1∗∗0∗ : 1∗∗00, 1∗∗01, 1∗00∗, 1∗10∗,

G2 =

∗∗∗00 : ∗∗000, ∗∗100, ∗0∗00, ∗1∗00,
∗∗∗10 : ∗∗010, ∗∗110, ∗0∗10, ∗1∗10,
∗∗0∗0 : ∗∗000, ∗∗010, ∗00∗0, ∗10∗0,
∗∗1∗0 : ∗∗100, ∗∗110, ∗01∗0, ∗11∗0,
∗∗00∗ : ∗∗000, ∗∗001, 0∗00∗, 1∗00∗,
∗0∗∗0 : ∗0∗00, ∗0∗10, ∗00∗0, ∗01∗0,
∗1∗∗0 : ∗1∗00, ∗1∗10, ∗10∗0, ∗11∗0.

Both gaussoids contain 15 squares but they are not isomorphic by Lemma 2.3 because
G1 has five distinct squares with |K| = 2 but G2 has only three.

(b) The previous example can be modified slightly to yield a counterexample to the
conjecture that all gaussoid closures might have the same cardinality. Starting with
A = {∗∗000, ∗∗100, 1∗00∗}, one obtains the two minimal extensions

G1 =

∗∗∗00 : ∗∗000, ∗∗100, 0∗∗00, 1∗∗00,
∗∗∗01 : ∗∗001, ∗∗101, 0∗∗01, 1∗∗01,
∗∗00∗ : ∗∗000, ∗∗001, 0∗00∗, 1∗00∗,
∗∗10∗ : ∗∗100, ∗∗101, 0∗10∗, 1∗10∗,
0∗∗0∗ : 0∗∗00, 0∗∗01, 0∗00∗, 0∗10∗,
1∗∗0∗ : 1∗∗00, 1∗∗01, 1∗00∗, 1∗10∗,

G2 =

∗∗∗00 : ∗∗000, ∗∗100, ∗0∗00, ∗1∗00,
∗∗00∗ : ∗∗000, ∗∗001, 0∗00∗, 1∗00∗.

G1 contains twelve distinct squares, but G2 only seven.
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Given a set of squares A, its closures, like all sets of squares, are completely described
by their 3-minors. By Lemma 4.1, every 3-minor M ↘ c of a closure M of A contains
a 3-gaussoid which extends A ↘ c. This suggests Algorithm 1 to list all closures by
iteratively closing 3-minors. It employs a subroutine Violated, which lists all 3-faces
c such that A ↘ c 6∈ G3, and a subroutine Closures3, which lists all closures of the
given set of squares of the 3-cube. Both of these can be implemented using tables.
Small-Extensions computes a list of gaussoid extensions of its argument A′, not all
of which are necessarily minimal. The output instruction adds a set of squares to the
output list which is returned at the end. Closures performs a post-processing step,
by computing the minima of the output list in the ⊆-poset of gaussoids. The extension
of A′ to A′ ∪ (g ↗ c) in line 5 corresponds to the simultaneous application of multiple
gaussoid axioms in the c-cube.

Algorithm 1 The gaussoid closure algorithm.

1: function Small-Extensions(A′)
2: output A′ if Violated(A′) = ∅
3: c← pick Violated(A′)
4: for each g ← Closures3(A′ ↘ c) do
5: output all Small-Extensions(A′ ∪ (g ↗ c))
6: end for
7: end function
8:

9: function Closures(A)
10: O ← Small-Extensions(A)
11: output all ⊆-minimal elements of O
12: end function

Proposition 4.16. The routine Closures in Algorithm 1 computes the minimal
gaussoid extensions of a set of squares A.

Proof. First observe that only sets of squares without a violated cube are output. By
Lemma 4.1, these are gaussoids. Furthermore, every recursive argument to Small-
Extensions is an extension of A and every element in the output list is an extension
of the argument A′. Hence the output list contains only gaussoid extensions of the
original input A. Then it suffices to show that the output list of Small-Extensions
contains all minimal gaussoid extensions. If this is the case, then the output of the post-
processing step in Closures is clearly the set of all minimal extensions, i.e. closures,
only.

Let M be a minimal extension of A. Since M is a gaussoid extending A, all violated
cubes in A must be fixed in M , by assigning extending 3-gaussoids to them. Let c be
the violated cube which is picked in line 3. Then G3 3M ↘ c ⊇ A↘ c and one of the
iterations of 4 gives a gaussoid g with A↘ c ⊆ g ⊆M ↘ c. Thus M is still a minimal
extension of A ∪ (g ↗ c).

Using this invariant, we see that there is a path through the tree of recursive calls
of Small-Extensions such that the set A′k which is passed to the k-th call satisfies
A ⊆ A′k ⊆ M . This path stops eventually when A′k0 becomes a gaussoid. Since this
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is a gaussoid extension of A contained in a minimal gaussoid extension M , it must be
A′k0 = M , which shows that M is indeed in the output list.

The post-processing step in Closures is necessary. Some choices of g for c in line 4
might lead to violations elsewhere in the hypercube which feed back and cause c to be
violated again. A cube which was violated twice has to be assigned the full 3-gaussoid
the second time. The following example shows that in this way the full n-gaussoid can
be put into the output list of Small-Extensions, even though it is not a minimal
extension.

Example 4.17. We start from A0 = A3 ↗ d t A3 ↗ d◦ for d = 0∗∗∗, i.e. two full
3-gaussoids assigned to opposing 3-faces of the 4-cube and add some other squares,
which correspond to choices which Algorithm 1 could have made on input A0. The
bigger set A specified below has the advantage that it leads to the desired phenomenon
in a single step.

A =

0∗∗∗ : 0∗∗0, 0∗∗1, 0∗0∗, 0∗1∗, 00∗∗, 01∗∗,
1∗∗∗ : 1∗∗0, 1∗∗1, 1∗0∗, 1∗1∗, 10∗∗, 11∗∗,
∗∗∗0 : ∗0∗0, ∗1∗0, 0∗∗0, 1∗∗0,
∗∗∗1 : ∗0∗1, ∗1∗1, 0∗∗1, 1∗∗1,
∗∗0∗ : ∗00∗, ∗10∗, 0∗0∗, 1∗0∗,
∗∗1∗ : 0∗1∗, 1∗1∗,
∗0∗∗ : ∗0∗0, ∗0∗1, ∗00∗, 00∗∗, 10∗∗,
∗1∗∗ : ∗1∗0, ∗1∗1, ∗10∗, 01∗∗, 11∗∗.

As can be seen from this listing, the ∗∗1∗-minor of A is violated, as it contains only two
squares. Since the squares oppose each other, this cube can be closed in two different
ways. The first adds the two squares ∗01∗, ∗11∗ to this face which just completes
the two 5-element minors and produces a gaussoid. The other alternative is adding
∗∗10, ∗∗11. Observe that the addition of ∗∗10 makes ∗∗∗0 into a 5-element minor and
similarly for ∗∗11 and the ∗∗∗1. This set can only be closed to the full gaussoid.

This shows that Small-Extensions, when run with input A will add a non-full
gaussoid as well as the full gaussoid to the output list. Clearly, the full gaussoid is
not a minimal extension when another extension exists, hence proving the need for the
poset minisation in Closures.

The gaussoid closures are highly non-unique. The next example shows that expo-
nentially many minimal gaussoid extensions are possible.

Example 4.18. Let F be an independent set in Q(n, 3, 3, 2), then we can assign a set
of two opposing squares in the 3-cube to every 3-face in F. By Lemma 2.12 (1), this
assignment lifts to a subset of An. In every 3-face indexed by F, there are two minimal
gaussoid extensions. All of the 2|F| possible choices lead to gaussoids, by examination
of their 3-minors similar to the proof of Proposition 4.9. Because they are pairwise
incomparable, it follows that all of them are minimal extensions.
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The gaussoid closure can become surprisingly large as well.

Example 4.19. As a consequence of Theorem 3.5, as soon as all squares of a particular
order are selected into a set of squares, its gaussoid closure is the full gaussoid. The
number of squares of order k is

(
n
2

)(
n−2
k−1

)
and this quantity is minimised for k = 1. Thus

the set of squares of order 1, which has cardinality
(
n
2

)
, closes to the full gaussoid, which

has cardinality
(
n
2

)
2n−2.

Example 4.19 exhibits an input set such that for every input square, 2n−2 output
squares are generated. It follows that the size of a gaussoid closure is not bounded
polynomially in the input size. Example 4.18 shows that the number of gaussoid
closures can be exponential in the input number of squares. The instances coming
from large independent sets also serve as examples of large inputs which do not close
to the full gaussoid.
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5 Conclusion and future work

The results in this thesis roughly fall into three categories, according to how they
were obtained. Section 2 introduced a calculation tool for faces of the hypercube and
proofs were largely based on calculation. The proofs in Section 3, with the exception
of Lemma 3.3, employed manipulations of axiom systems, notably the N Theorem 3.5
and the characterisations of ascending and simultaneously ascending and descending
gaussoids Proposition 3.8 and Theorem 3.10. And finally Section 4 was based on minors
and embeddings, their hypercube interpretation and consequently combinatorics of
the hypercube. The last section applied the construction methods to produce badly
behaving examples for the operation of gaussoid closure.

The association of gaussoids with sets of squares was fruitful in this regard, as it
inspired the graphs Q(N, k, p, q) as gaussoid construction devices. A branch of future
work, following matroid theory, should investigate cryptomorphic definitions and oper-
ations for combining gaussoids to extend this toolset. [BDKS17] provides an alternative
gaussoid definition to this end via combinatorial compatibility with certain quadratic
trinomials which are derived from the edges inside cubes of the hypercube. This leads
to gaussoids over hyperfields in the sense of Baker and Bowler [BB16] whose study was
initiated in [BDKS17].

It was shown that the logarithm of the number of n-gaussoids is asymptotically
between n2n and n22n. I conjecture that the polynomial order of n is closer to 2
than 1. The exponent 1 is the limit of what an independent set in Q(n, 3, 3, 2) can
achieve. Further work might go into varying the parameter k as well or coming up
with less wasteful indexing structures for “safe” minors to assign to than independent
sets.

Concerning axiomatic methods, a proper model-theoretic foundation for the first-
order language of gaussoids is required to formulate and prove (non-)axiomatisability
results for certain properties of gaussoids. Some work in this direction for graphoids
was done in [CSBLLM16].

Furthermore, representability over finite fields remain to be investigated. The apr-
sequences of gaussoids which were introduced ad-hoc in Section 3.1 likewise.
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pendence structures. Kybernetika, 43(3):327–342, 2007.
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[Mat92] Frantǐsek Matúš. On equivalence of markov properties over undirected
graphs. Journal of Applied Probability, 29(3):745—-749, 1992.
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