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Causal modeling with directed graphs

I We want a statistical model which captures the causal
structure encoded in a directed graph G = (V ,E).

I Parents of node j are regarded as direct causes of j,
further-up ancestors are only indirect causes.
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I A linear structural equation model defines random variables X recursively
via G, parameter matrix Λ and Gaussian noise ε:

Xj =
∑

i∈pa(j)
λijXi + εj , εj ∼ N (0, ωj).

I Solutions to this system are also Gaussian with covariance matrix satisfying
the congruence equation (I − Λ)TΣ(I − Λ) = Ω.
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Reasoning with graphical models
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Properties of SEMs for acylic graphs

If G does not contain a directed cycle (“feedback loop”):

I M(G) is an irreducible algebraic variety and a smooth manifold.

I The parameters (ω,Λ) are rationally identifiable.

I The model is equivalently given by the Markov property of the DAG, e.g.,

M(G) = {Σ ∈ PDV : Xi ⊥⊥ Xj | Xpa(j) whenever ij 6∈ E}.

Interactions between nodes only through the prescribed causal mechanism

I Model equivalence M(G) = M(H) is combinatorially characterized:
if and only if G and H have the same skeleton and v-structures.

I Markov equivalence = ambiguity about the direction of causality.
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Lyapunov models

I We want a statistical model which captures the causal
structure of a directed graph G = (V ,E) with cycles.

I Consider stationary distributions of the
Ornstein–Uhlenbeck processes satisfying

dX(t) = M(X(t)− µ)dt + DdW(t),

where mji = 0 if ij 6∈ E and W is a Brownian motion.
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I Temporal perspective of stochastic process accommodates feedback loops.

I The stationary distribution is Gaussian with covariance matrix satisfying the
Lyapunov equation MΣ+ ΣMT + DDT = 0.
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Parametrization

MΣ+ ΣMT + C = 0.

I If M is stable (all eigenvalues have negative real part) and C is positive definite,
then there exists a unique positive definite solution Σ.

I The Lyapunov equation is a linear matrix equation in Σ, so it can be rewritten via
vectorization and Kronecker products:

(I ⊗ M + M ⊗ I) vecΣ = − vecC .

I The unique solution is obtained via Cramer’s rule.

The Lyapunov model is an irreducible algebraic variety!∗

[1]Actually a semialgebraic set with irreducible Zariski closure.
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Parameter identifiability

MΣ+ ΣMT + C = 0.

I The Lyapunov equation is also a linear matrix equation in M, equivalent to:

(Σ⊗ I + (I ⊗ Σ)Kn) vecM = − vecC ,

where Kn is the commutation matrix satisfying Kn vecM = vec(MT).

I It has redundant rows since Σ and C are symmetric, but:

Theorem ([Det+23])
Let G be a simple directed graph (i.e., having no directed 2-cycles). Given Σ
in the graphical continuous Lyapunov model of G with fixed diffusion matrix C,
the parameter matrix M is uniquely recoverable as a rational function of Σ.
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Vanishing ideal

I Parameter identifiability can be used to implicitize the parametrization map.

I [BS24] gives generators of the vanishing ideal up to saturation.

I Lyapunov models generally have a positive-dimensional singular locus but so far
no model with singularities in the positive definite cone is known.
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Restricted trek rule

Lemma ([Boe+24])
Let G = (V ,E) be a DAG, fix C = 2I and mii = − 1/2ζ for all i ∈ V . Then the
following trek rule holds:

σij =
∑

T :(`, r)-trek
from i to j

2ζ`+r+1
(
`+ r
`

)
mT , (1)

where the trek monomial mT associated to a trek T is given by mT =
∏

e∈T me , i.e.,
the product over all the edges e in that trek.

I For acyclic linear SEMs, a similar trek rule holds but without the blue term.
I This disturbs the conditional independence structure familiar from linear SEMs.
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Conditional independence

The marginal independence graph Ĝ of G = (V ,E) is the undirected graph on vertices
V in which ij ∈ Ê if and only if there exists a trek between i and j in G.

Theorem ([Boe+24])
Then the Lyapunov model of G is Markov-perfect to Ĝ:

[i ⊥⊥ j | K ] holds if and only if V \ ({i , j} ∪ K) separates i and j in Ĝ.

I All conditional independence statements are implied by absences of treks.
I Lyapunov models are not defined by conditional independence relations.
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Conditional independence and geometry

I Linear SEMs are defined by conditional independence relations, so their geometric
properties are preserved under restriction to correlation matrices.

I The Lyapunov model on V = {1, 2, 3} with missing edge 1 6→ 3 is cut out by the
following irreducible quintic form:

σ11σ
2
12σ13σ22 − σ2

11σ13σ
2
22 − σ11σ

3
12σ23 + σ11σ12σ

2
13σ23 + σ2

11σ12σ22σ23 +

σ12σ
2
13σ22σ23 − σ2

11σ13σ
2
23 − 2σ2

12σ13σ
2
23 + σ11σ13σ22σ

2
23 − σ11σ

2
12σ13σ33 −

σ11σ13σ
2
22σ33 + σ2

11σ12σ23σ33 + σ3
12σ23σ33 = 0

I On the space of correlation matrices σ11 = σ22 = σ33 = 1, this turns reducible

(σ13 − σ12σ23) · (1 − σ12σ13σ23) = 0

and implies the CI relation [1 ⊥⊥ 3 | 2] which does not hold on the entire model.
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What we know so far

Rat. param. Rat. ident. Smooth CI Markov prop. Struct. ident.

LSEM
Acyclic 3 3 3 3 7

Simple 3 7 ? 3 7

Lyap.
Acyclic 3 3 ? 7 7a

Simple 3 3 ? 7 7

aBut appears better than SEMs

Further directions:

I Is there an easier formula for the parametrization than Cramer’s rule?
I Are Lyapunov models smooth?
I Are the irreducible factors |A(Σ)| positive on the set of stable matrices?
I Relation of a graph’s linear SEM and Lyapunov model for correlation matrices?
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