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Implicitization

I Given a rational parametrization α : Θ Rn, find an implicit description of the
image α(Θ) in terms of polynomial equations and inequalities in Rn.

I Θ parameter space — often simple and linear.
I M = α(Θ) model — usually non-linear.

I α can be used to generate points on the model or optimize over it.

I Implicit representation can be used to test model membership

I . . . to perform hypothesis tests
I . . . to distinguish models
I . . . for structure learning
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The main idea

Θ Mα

β



3 / 13

The main idea

I Suppose α : Rn Rn has a rational inverse β. (Rational identifiability!)

I Let Θ be a basic semialgebraic parameter space.
I Assume that the denominators of β are positive on M = α(Θ).

I The pullback β∗(f ) of a polynomial f on Θ is the rational function f ◦ β on M.
I f vanishes on Θ if and only if the numerator of β∗(f ) vanishes on M.
I By birationality, all vanishing polynomials on M can be obtained in this way.
I Analogous for non-negative, non-vanishing and positive polynomials.

If the geometry of Θ is simple, then so is that of M.
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Geometric birational implicitization

I A = R[x1, . . . , xn] and Ǎ = R[x̌1, . . . , x̌n] are affine R-algebras.

I S ⊆ A and Š ⊆ Ǎ multiplicatively closed subsets.
I Assume that α∗ : S−1A Š−1Ǎ is an R-algebra isomorphism with inverse β∗.
I We may assume that Š is finitely generated by š` and that S± = β∗(Š±).
I For a fraction f/u ∈ S−1A let num(f/u) := f .

Theorem
If Θ = {x̌ ∈ Rn : f̌i(x̌) = 0, p̌j(x̌) ≥ 0, ǔk(x̌) 6= 0, š`(x̌) > 0} is non-empty, then

M = α(Θ) = {x ∈ Rn : fi(x) = 0, pj(x) ≥ 0, uk(x) 6= 0, s`(x) > 0},

where fi = numβ∗(f̌i), pj = numβ∗(p̌j) and uk = numβ∗(ǔk).
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I Assume that α∗ : S−1A Š−1Ǎ is an R-algebra isomorphism with inverse β∗.
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Vanishing ideal and model equivalence

Theorem
If Θ is an irreducible algebraic variety with vanishing ideal generated by f̌i ∈ Ǎ and
disjoint from Š, then the vanishing ideal of α(Θ) is generated by numβ∗(f̌i) up to
saturation at S.

I Gives an easy model equivalence test:

I Let M1 = α1(Θ1) and M2 = α2(Θ2) in a common ambient space.
I Θ1 = V(f̌i : i = 1, . . . , r) and Θ2 = V(ǧi : i = 1, . . . , s) irreducible.
I Then M1 ⊆ M2 if and only if α∗

1(numβ∗
2(ǧi)) = 0 on Θ1.

I Θi are usually linear spaces so this is much simpler than Gröbner bases.

I Useful to detect structure identifiability in graphical models.
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2(ǧi)) = 0 on Θ1.

I Θi are usually linear spaces so this is much simpler than Gröbner bases.

I Useful to detect structure identifiability in graphical models.



5 / 13

Vanishing ideal and model equivalence

Theorem
If Θ is an irreducible algebraic variety with vanishing ideal generated by f̌i ∈ Ǎ and
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disjoint from Š, then the vanishing ideal of α(Θ) is generated by numβ∗(f̌i) up to
saturation at S.

I Gives an easy model equivalence test:
I Let M1 = α1(Θ1) and M2 = α2(Θ2) in a common ambient space.
I Θ1 = V(f̌i : i = 1, . . . , r) and Θ2 = V(ǧi : i = 1, . . . , s) irreducible.
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Examples: Gaussian Bayesian network

I Fix a DAG G (topologically ordered) and a complete DAG K such that G ⊆ K .

I Consider the parametrization α(Ω,Λ) = (I − Λ)−TΩ(I − Λ)−1 of K

and the polyhedral cone Θ = {(Ω,Λ) : ωii > 0, λij = 0 for ij 6∈ E(G)}.
I The Gaussian DAG model of G is M(G) = α(Θ).
I Use global rational identifiability of the parameters:

β∗(ωii) =
|Σ[i]|
|Σ[i−1]|

, β∗(λij) =
|Σij|[j−1]\i |
|Σ[j−1]|

, for i < j.

I The model is contained in PDV and its vanishing ideal is the saturation of
CIG = 〈|Σij|[j−1]\i | : ij 6∈ E(G)〉 at the leading principal minors.
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Markov properties

I The numerators of β∗ recover well-known Markov properties:

I Undirected Gaussian graphical models: [i ⊥⊥ j | V \ ij] for ij 6∈ G.
I Gaussian Bayesian networks: [i ⊥⊥ j | [j − 1] \ i] for ij 6∈ G.
I Staged trees & discrete Bayesian networks: p[v ]p[w ′] = p[v ′]p[w ] [DG20; GMS06]

I Our result also provides an explicit saturation that produces the vanishing ideal.
I Unified technique for discrete and Gaussian models.
I Resolves a sharpening of a conjecture of Sullivant [Sul08].
I Transparently extends to other equational constraints like colored DAGs:

λij = λkl whenever ij ∈ E(G) and kl ∈ E(G) have the same color.

Yields constraints of the sort |Σ[l−1]||Σij|[j−1]\i | = |Σ[k−1]||Σkl|[l−1]\k | [BKMS24].
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Hard implicitizations become easy

1

3

4

2

6

5

-- Vanishing ideal via built-in elimination method:
time I1 = gaussianVanishingIdeal R;

-- Vanishing ideal via saturation:
time (

prs = for i in V list (
P := toList parents(G, i);
if #P == 0 then 1 else det submatrix(S, P, P)

);
J = ideal for ij in toList(allE-set(edges G)) list (

P := toList parents(G, ij#1);
det submatrix(S, {ij#0}|P, {ij#1}|P)

);
I2 = fold(saturate, J, prs);

);

I1 == I2 --> true
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-- Vanishing ideal via built-in elimination method: 3 hours and 31 minutes
time I1 = gaussianVanishingIdeal R;

-- Vanishing ideal via saturation: 0.0478729 seconds
time (

prs = for i in V list (
P := toList parents(G, i);
if #P == 0 then 1 else det submatrix(S, P, P)

);
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Examples: The Verma constraint

1 2 3 4

ω11 = |Σ1|, ω22 =
|Σ12|
|Σ1|

, ω33 =
|Σ123|
|Σ12|

, ω44 =
|Σ1234|
|Σ123|

+
|Σ12||Σ24|13|2

|Σ1||Σ123|2
,

ω24 =
|Σ12||Σ24|13|
|Σ1||Σ123|

, λ12 =
|Σ12|∅|
|Σ1|

, λ13 =
|Σ13|2|
|Σ12|

, λ23 =
|Σ23|1|
|Σ12|

, λ34 =
|Σ34|12|
|Σ123|

,

λ14 =
|Σ1||Σ14|23|+ |Σ12|∅||Σ24|13|

|Σ1||Σ123|
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Examples: Continuous Lyapunov models

I Can also compute vanishing ideals for Lyapunov models, e.g. 1 2 3:

σ11σ
2
12σ13σ22 − σ2

11σ13σ
2
22 − σ11σ

3
12σ23 + σ11σ12σ

2
13σ23 + σ2

11σ12σ22σ23 +

σ12σ
2
13σ22σ23 − σ2

11σ13σ
2
23 − 2σ2

12σ13σ
2
23 + σ11σ13σ22σ

2
23 − σ11σ

2
12σ13σ33 −

σ11σ13σ
2
22σ33 + σ2

11σ12σ23σ33 + σ3
12σ23σ33 = 0.

I This irreducible quintic specializes to σ13 = σ12σ23 when σ11 = σ22 = σ33 = 1
which also happens to cut out the Bayesian network model of 1 2 3 . . .

I Model constraints are not just conditional independence [BDHLMS25].

A combinatorial “separation” criterion is not yet known.
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An edge-colored Lyapunov model



References

[BDHLMS25] Tobias Boege, Mathias Drton, Benjamin Hollering, Sarah Lumpp, Pratik Misra, and
Daniela Schkoda. “Conditional independence in stationary diffusions”. In: Stochastic
Processes and their Applications (2025). doi: 10.1016/j.spa.2025.104604.

[BKMS24] Tobias Boege, Kaie Kubjas, Pratik Misra, and Liam Solus. Colored Gaussian DAG
models. 2024. arXiv: 2404.04024 [math.ST].

[BS24] Tobias Boege and Liam Solus. Real birational implicitization for statistical models.
2024. arXiv: 2410.23102 [math.ST].

[DG20] Eliana Duarte and Christiane Görgen. “Equations defining probability tree models”.
In: J. Symb. Comput. 99 (2020), pp. 127–146. doi: 10.1016/j.jsc.2019.04.001.

[GMS06] Dan Geiger, Christopher Meek, and Bernd Sturmfels. “On the toric algebra of
graphical models”. In: Ann. Stat. 34.3 (2006), pp. 1463–1492. doi:
10.1214/009053606000000263.

[Sul08] Seth Sullivant. “Algebraic geometry of Gaussian Bayesian networks”. In: Adv. Appl.
Math. 40.4 (2008), pp. 482–513. doi: 10.1016/j.aam.2007.04.004.

https://doi.org/10.1016/j.spa.2025.104604
https://arxiv.org/abs/2404.04024
https://arxiv.org/abs/2410.23102
https://doi.org/10.1016/j.jsc.2019.04.001
https://doi.org/10.1214/009053606000000263
https://doi.org/10.1016/j.aam.2007.04.004

	Appendix
	References


