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Probabilistic reasoning

I Probabilistic reasoning deals with the representation, updating and processing
of uncertain beliefs about a system of objects.

I Think: statistical models inferred from observational or interventional data.

I But also think: geometric reasoning. Objects with uncertain “positions” but
certain “relations” with each other.

In this talk: independence relations.

I Fundamental qualitative information about the system.
I Knowledge of independence allows more compact representation and more

efficient processing.
I Common assumption in geometry, statistical modeling, cryptography …
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A geometric example

I Consider 3 points in R2 which lie on a line:

A =

x1 x2 x3
y1 y2 y3
1 1 1

 such that |A| = 0.
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A geometric example

A =

x1 x2 x3
y1 y2 y3
1 1 1

 such that |A| = 0.
1

2

3

I Defines a variety V . I think of a configuration A ∈ V .

I For all you know, the point p1 = (x1, y1) could be anywhere in R2.
I But if I reveal p2 and p3, then your uncertainty about p1 is reduced to an R1!

Functional dependence

I In statistics, graphical models are a direct analogue of this.
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A statistical example

I A linear structural equation model defines random
variables X recursively via a directed acyclic graph
G = (V ,E) and Gaussian noise:

Xj =
∑

i∈pa(j)
λijXi + εj , εj ∼ N (0, ωj).

1 3

45

2

I The vector X is again Gaussian with mean zero. Since G is acyclic, we can solve
for the covariance matrix Σ = (I − Λ)−TΩ(I − Λ)−1 → model∗ M(G).

I If Xpa(j) are observed, then Xj is independent of its non-descendants.

Conditional independence
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Conditional independence [X ⊥⊥ Y | Z ]

When does knowing Z make X irrelevant for Y ?

Example: Two independent fair coins c1 and c2 are wired to a bell b which rings
if and only if c1 = c2.

I [c1 ⊥⊥ c2]
I [c1 6⊥⊥ c2 | b] …

Laws of probabilistic reasoning
Let X1, . . . ,Xn be jointly distributed random variables. Assume that Xi ⊥⊥ Xj | XK
for some choices of i , j ∈ [n] and K ⊆ [n] \ {i , j}. Which other CI statements
Xr ⊥⊥ Xs | XT also hold?
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Gaussian conditional independence

Assume X = (Xi : i ∈ N) are jointly Gaussian with covariance matrix Σ ∈ PDN .

Definition
The polynomial Σ[K ] := |ΣK ,K | is a principal minor of Σ and Σ[ij |K ] := |ΣiK ,jK |
is an almost-principal minor.

Algebraic statistics proves:
I Σ is PD if and only if Σ[K ] > 0 for all K ⊆ N.

I [i ⊥⊥ j | K ] holds if and only if Σ[ij |K ] = 0.

I E[X ] = µ is irrelevant.
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Gaussian CI models

Definition
A CI constraint is a CI statement [i ⊥⊥ j | K ] or its negation [i 6⊥⊥ j | K ].
The model of a set of CI constraints is the set of all PD matrices which satisfy them.

Figure: Model of Σ[12 | 3] = a − bc = 0 in the space of 3× 3 correlation matrices.



8 / 14

Models and implication

Implication problem for Gaussian conditional independence
Given a clause

∧
P =⇒

∨
Q, where P and Q are sets of CI statements over N,

decide if it is valid for all N-variate Gaussians.

∧
P =⇒

∨
Q

is not valid
⇐⇒ M(P ∪ ¬Q)

has a point
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Example of CI implication

Σ =

1 a b
a 1 c
b c 1



I If Σ[12 | ] = a and Σ[12 | 3] = a − bc
vanish, then bc = Σ[13 | ] · Σ[23 | ]
must vanish:

[12 | ] ∧ [12 | 3] =⇒ [13 | ] ∨ [23 | ].
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Normal form for proofs and refutations

Let fi ∈ Z[t1, . . . , tk ] be integer polynomials in finitely many variables.

Theorem (Tarski’s transfer principle)
If a polynomial system {fi ./i 0}, ./i ∈ {=, 6=, <,≤,≥, >}, has a solution over R,
then it has a solution in a finite real extension of Q.

→ If
∧
P =⇒

∨
Q is false, there is a counterexample matrix Σ with Q entries.

[12 | ] ∧ [12 | 3] =⇒ [13 | ] is false and a counterexample is 1 0 1/2

0 1 0
1/2 0 1

 .
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Normal form for proofs and refutations

Let fi , gj , hk ∈ Z[t1, . . . , tk ] be integer polynomials in finitely many variables.

Theorem (Positivstellensatz)
A polynomial system {fi = 0, gj ≥ 0, hk 6= 0} is infeasible if and only if there exist
f ∈ ideal(fi), g ∈ cone(gj) and h ∈ monoid(hk) such that g + h2 = f .

→ If
∧
P =⇒

∨
Q is true, there exists an algebraic proof for it with Z coefficients.

[12 | ] ∧ [12 | 3] =⇒ [13 | ] ∨ [23 | ] is true and a proof is the final polynomial

Σ[13 | ] · Σ[23 | ] = Σ[3] · Σ[12 | ]− Σ[12 | 3].
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A 5 × 5 final polynomial

The following implication is valid for all positive-definite 5× 5 matrices:

[12 | ]∧[14 | 5]∧[23 | 5]∧[35 | 1]∧[45 | 2]∧[15 | 23]∧[34 | 12]∧[24 | 135] =⇒ [25 | ]∨[34 | ].

[25 | ][34 | ] · [1][2][3][15] =(
cd2egr + bd2fgr − ad2grh − 2cd2e2i − 2bd2efi − 2pdfgri + 2ad2ehi + 2pdefi2 − 2pdqhi2 + 2pcqi3 +

2pdqrij − 2pbqi2j − pcegrt + pbfgrt + pagrht + 2pce2it − 2pcqrit + 2pbqhit − 2paehit
)
· [12 | ] +(

pdqer + pbqgr − 2pbqei
)
· [14 | 5]−

(
pcdqr + p2fgr − 2pbcqi + 2pb2qj − 2p2qrj

)
· [23 | 5] +(

cdqgr − 2cdqei + 2pqghi − 2pqfi2 − pqgrj + 2pqeij − 2pe2ft + 2pqfrt
)
· [35 | 1] +(

pd2er − 2pbdei + p2gri + 2pb2et − 2p2ert
)
· [45 | 2]−

(
2pdfi − 2pbft

)
· [15 | 23]−(

d2gr − 2d2ei − pgrt + 2peit
)
· [34 | 12]− 2pqi · [24 | 135].
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A 5 × 5 final polynomial

R = QQ[p,a,b,c,d, q,e,f,g, r,h,i, s,j, t];
X = genericSymmetricMatrix(R,p,5);
I = ideal(
det X_{0}^{1}, det X_{0,3}^{2,3}, det X_{0,4}^{3,4},
det X_{1,4}^{2,4}, det X_{2,0}^{4,0}, det X_{3,1}^{4,1},
det X_{0,1,2}^{4,1,2}, det X_{2,0,1}^{3,0,1},
det X_{1,0,2,4}^{3,0,2,4}

);
U = g*h*p*q*r*(p*t-d^2); -- [25 | ][34 | ] · [1][2][3][15] ∈ monoid(V)
U % I --> 0, meaning monoid(V) ∩ ideal(V) 6= ∅ in Q[X]
-- Get a proof that U is in I:
G = gens I; -- the equations generating ideal(V)
H = U // G; -- linear combinators for U from G
U == G*H --> true
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General proofs and refutations

Theorem (Tarski’s transfer principle)
If an implication is wrong, there exists a counterexample to it with real algebraic
probabilities.

Theorem (Positivstellensatz)
If an implication is correct, there exists a proof of it in the form of a single polynomial
identity with integer coefficients.

I These geometric theorems apply to probabilistic reasoning!
I They give theoretical guarantees and exact certificates.
I In practice, few things work symbolically. Require robust numerical non-linear

algebra tools like HomotopyContinuation.jl to experiment and form conjectures.
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Thank you for your attention!



Problem 1: Gaussian CI implication

Let Σ be the covariance matrix of a regular Gaussian distribution. (Thus Σ is strictly
positive definite!) Then [i ⊥⊥ j | K ] holds if and only if |ΣiK ,jK | = 0.

(a) For a three Gaussian random variables 1, 2, 3 show that

[1 ⊥⊥ 2 | 3 ] ∧ [1 ⊥⊥ 3 | 2 ] =⇒ [1 ⊥⊥ 2 ] ∧ [1 ⊥⊥ 3 ].

(b) For four Gaussian random variables 1, 2, 3, 4 show that

[1 ⊥⊥ 3 ] ∧ [1 ⊥⊥ 4 ] ∧ [1 ⊥⊥ 4 | 2, 3 ] ∧ [2 ⊥⊥ 3 | 1, 4 ] =⇒ [1 ⊥⊥ 4 ].

(Hint: Primary decomposition.)



Problem 2: Graphical models

The Gaussian graphical model MG of a directed acyclic graph G = (V ,E) consists of
all positive definite V × V matrices Σ which satisfy

[i ⊥⊥ j | pa(j)] for all i < j such that i → j 6∈ E .

Here < is a topological ordering on G and pa denotes the parent set.

(a) Show that the two DAGs 1→ 2→ 3 and 1← 2← 3 define the same model.
What is its dimension? Which dimension did you expect?

(b) For any directed acyclic graph G show that if i → j is an edge, then [i ⊥⊥ j | pa(j)]
does not hold for a generic Σ ∈MG .

(c) What do you think is the right Bayesian network to represent the causal
relationships between “Summer”, “Rain barrel is full”, “Ground is wet”,
“It rained”, “Sprinkler was on” and “Umbrella is wet”? Compare your models.
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