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Gaussian conditional independence

Consider random variables (ξi)i∈N ∼ N(µ,Σ). The conditional independence (CI) statement
ξi á ξj ∣ ξK conveys, informally, that if ξK is known, then learning the value of ξi does not
give any information about ξj .

Definition

The polynomial Σ[K ] ∶= det ΣK ,K is a principal minor of Σ and Σ[ij ∣K ] ∶= det ΣiK ,jK is an
almost-principal minor.

If Σ is positive-definite, then Σ[K ] > 0, and ξi á ξj ∣ ξK holds if and only if Σ[ij ∣K ] = 0.
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Almost-principal minors

Σ[ij ∣] = xij

Σ[ij ∣k] = xijxkk − xikxjk

Σ[ij ∣kl] = xijxkkxll − xilxjlxkk + xilxjkxkl + xikxjlxkl − xijx
2
kl − xikxjkxll

Σ[ij ∣klm] = xijxkkxllxmm + ximxjmx
2
kl − ximxjlxklxkm − xilxjmxklxkm + xilxjlx

2
km

− ximxjmxkkxll + ximxjkxkmxll + xikxjmxkmxll − xijx
2
kmxll

+ ximxjlxkkxlm + xilxjmxkkxlm − ximxjkxklxlm − xikxjmxklxlm

− xilxjkxkmxlm − xikxjlxkmxlm + 2xijxklxkmxlm + xikxjkx
2
lm

− xijxkkx
2
lm − xilxjlxkkxmm + xilxjkxklxmm + xikxjlxklxmm

− xijx
2
klxmm − xikxjkxllxmm

⋮
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Gaussian CI models

Definition

A CI constraint is a CI statement ξi á ξj ∣ ξK or its negation ¬(ξi á ξj ∣ ξK). They are
algebraic conditions on the entries of Σ, equivalent to vanishing or non-vanishing of the
almost-principal minors Σ[ij ∣K ].

Definition

The model of a set of CI constraints is the set of all positive-definite matrices which satisfy
the constraints.
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Gaussian CI models

Figure: Gaussian model Σ[12∣3] = 0 inside the elliptope.
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Models and inference

Consider two sets of CI statements P and Q:

⋀P ⇒ ⋁Q

is not valid
⇐⇒

P ∪ ¬Q

has a model

Reasoning about relevance statements in normally distributed random variables is
the same as reasoning about the vanishing of very special kinds of determinants
on very special kinds of varieties inside the positive-definite matrices.

5 Tobias Boege // The Gaussian CI inference problem



Models and inference

Consider two sets of CI statements P and Q:

⋀P ⇒ ⋁Q

is not valid
⇐⇒

P ∪ ¬Q

has a model

Reasoning about relevance statements in normally distributed random variables is
the same as reasoning about the vanishing of very special kinds of determinants
on very special kinds of varieties inside the positive-definite matrices.

5 Tobias Boege // The Gaussian CI inference problem



Models and inference

Consider two sets of CI statements P and Q:

⋀P ⇒ ⋁Q

is not valid
⇐⇒

P ∪ ¬Q

has a model

Reasoning about relevance statements in normally distributed random variables is
the same as reasoning about the vanishing of very special kinds of determinants
on very special kinds of varieties inside the positive-definite matrices.

5 Tobias Boege // The Gaussian CI inference problem



Examples of CI inference

Consider a general positive-definite 3 × 3 correlation matrix

Σ =
⎛
⎜
⎝

1 a b
a 1 c
b c 1

⎞
⎟
⎠
.

● If Σ[12∣3] = a − bc and Σ[13∣] = b vanish, then Σ[12∣] = a and Σ[13∣2] = b − ac
must vanish as well:

(12∣3) ∧ (13∣) ⇒ (12∣) ∧ (13∣2).

● If Σ[12∣] = a and Σ[12∣3] = a − bc vanish, then bc = Σ[13∣] ⋅Σ[23∣] must vanish:

(12∣) ∧ (12∣3) ⇒ (13∣) ∨ (23∣).
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No finite set of axioms

“There is no finite complete axiomatization of Gaussian CI”:

Theorem (Sullivant 2009)

As the matrix size n grows, there exist valid inference rules for Gaussians which need
arbitrarily many antecedents.

(12∣3) ∧ (23∣4) ∧ (34∣1) ∧ (14∣2) ⇒ (12∣) (n = 4)

(12∣3) ∧ (23∣4) ∧ (34∣5) ∧ (45∣1) ∧ (15∣2) ⇒ (12∣) (n = 5)

(12∣3) ∧ (23∣4) ∧ (34∣5) ∧ (45∣6) ∧ (56∣1) ∧ (16∣2) ⇒ (12∣) (n = 6)

⋮
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Complexity bounds (upper)

Let f1, . . . , fr ∈ Z[t1, . . . , tk] be integer polynomials in finitely many variables. We consider a
system of polynomial constraints “fi &i 0” where &i ∈ {=, /=,<,≤,≥,>}.

Theorem (Tarski’s transfer principle)

If a polynomial system {fi &i 0} has a solution over R, then it has a solution in a finite real
extension of Q.

Theorem (Real Nullstellensatz)

A polynomial F vanishes on the semialgebraic set K = {fi &i 0} if and only if F ∈ R
√
J(fi &i 0).

Keyword for this decision problem: existential theory of the reals.
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Complexity bounds (lower)

Theorem (B. 2021)

For every finite real extension K/Q there exists a Gaussian CI model MK such that:
for every L/Q, MK has an L-rational point if and only if K ⊆ L.

Theorem (B. 2021)

For every system of polynomials F defining a semialgebraic set K = {fi &i 0} one can
compute a set of CI constraints IF such that IF has a model if and only if K contains
a real point.
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Proof idea (1): Algebra ⊆ Synthetic geometry

Point and line configuration for the equation
x2 − 2 = 0.

The configuration is specified by incidences between
points and lines and also the parallelities of lines.

It is realizable over Q(
√

2) but not over Q.

Keyword for the general technique: von Staudt constructions.
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Proof idea (2): Synthetic geometry ⊆ Gaussian CI

Σ[ij ∣] = xij → impose xkl = xkm = xlm = 0, then:

Σ[ij ∣klm] = xijxkkxllxmm + ximxjmx
2
kl − ximxjlxklxkm − xilxjmxklxkm + xilxjlx

2
km

− ximxjmxkkxll + ximxjkxkmxll + xikxjmxkmxll − xijx
2
kmxll

+ ximxjlxkkxlm + xilxjmxkkxlm − ximxjkxklxlm − xikxjmxklxlm

− xilxjkxkmxlm − xikxjlxkmxlm + 2xijxklxkmxlm + xikxjkx
2
lm

− xijxkkx
2
lm − xilxjlxkkxmm + xilxjkxklxmm + xikxjlxklxmm

− xijx
2
klxmm − xikxjkxllxmm

= xij − ∑
k=k,l ,m

xikxjk = xij − ⟨(
xik
xil
xim

),(
xjk
xjl
xjm

)⟩ .
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Approximations to the
inference problem
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Approximations to the inference problem

Theorem (Matúš 2005)

The following relations hold for every symmetric matrix Σ:

Σ[ij ∣L]2 = Σ[iL] ⋅Σ[jL] −Σ[L] ⋅Σ[ijL]

→ semimatroids

Σ[kL] ⋅Σ[ij ∣L] = Σ[L] ⋅Σ[ij ∣kL] +Σ[ik ∣L] ⋅Σ[jk ∣L]

→ gaussoids

These relations define essential geometric properties of symmetric matrices in principal
and almost-principal minor coordinates. Study their combinatorics!
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The multiinformation region

Σ[ij ∣L]2 = Σ[iL] ⋅Σ[jL] −Σ[L] ⋅Σ[ijL]

The Gaussian multiinformation region M is the image of Σ↦ (log Σ[K ] ∶ K ⊆ [n]) ∈ R2n .

Multiinformation vectors m = m(Σ) ∈ M satisfy the following linear information inequalities:

△ij ∣K(m) ∶= miK +mjK −mijK −mK ≥ 0. (Submodularity)

Moreover △ij ∣K(m(Σ)) = 0 if and only if Σ[ij ∣K ] = 0.

→ This is a polyhedral condition on the vector m.
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Information inequalities

Idea: Take a polyhedral cone C inside of the convex cone M ∨ and consider C∨ ⊇ M
as an outer approximation and derive CI inference rules from it.

Linear information inequalities at the region M of the form

∑
β∈Q

cβ △β (m) ≤ ∑
α∈P

cα△α (m), with cα, cβ > 0,

encode inference rules

⋀
α∈P

α⇒ ⋀
β∈Q

β.
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Semimatroids

The cone of tight polymatroids in R2n is given by

m∅ = 0, mN = mN∖i , for all i ∈ N,
△ij ∣K(m) ≥ 0, for all (ij ∣K).

Each △ij ∣K ≥ 0 gives rise to a unique facet which is identified with the CI statement (ij ∣K).

CI inference ⋀P ⇒ ⋀Q means “if it lies on every facet α ∈ P, then does it lie on every
facet β ∈ Q as well?” → Study the face lattice!

Each face corresponds to the set of (ij ∣K) statements of the facets it lies on.
These CI structures are semimatroids.
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CI inference via linear programming

Inspecting the face lattice of the tight polymatroid cone in R25 with the LP solver
SoPlex proves, for instance,

(12∣) ∧ (13∣4) ∧ (14∣5) ∧ (15∣23) ∧ (23∣5) ∧ (24∣135) ∧ (34∣12) ∧ (35∣1) ∧ (45∣2)
⇒ (12∣5) ∧ (13∣5) ∧ (14∣3) ∧ (15∣3) ∧ (15∣4) ∧ (23∣) ∧ (35∣12)

for all Gaussian distributions.

Theorem (Matúš 1997)

Semimatroids have no finite complete axiomatization.
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The Gaussian CI configuration space

Σ[kL] ⋅Σ[ij ∣L] = Σ[L] ⋅Σ[ij ∣kL] +Σ[ik ∣L] ⋅Σ[jk ∣L]

The Gaussian CI configuration space G ⊆ R2n ×R(
n
2
)2n−2 consists of all vectors of principal

and almost-principal minors of Σ ∈ PDn.

Very wasteful encoding of a matrix, but this creates simple and useful relations on
configuration vectors. The CI structure of Σ is encoded in the zero pattern of c(Σ) ∈ G .
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Combinatorial compatibility

Σ[kL] ⋅Σ[ij ∣L] = Σ[L] ⋅Σ[ij ∣kL] +Σ[ik ∣L] ⋅Σ[jk ∣L]

Combinatorial compatibility means “fulfilling of relations under incomplete information”:
What if we only knew that all Σ[K ] /= 0 and whether or not Σ[ij ∣K ] = 0 for every (ij ∣K)?

(ij ∣L) ∧ (ij ∣kL) ⇒ (ik ∣L) ∨ (jk ∣L)
(ij ∣L) ∧ (ik ∣jL) ⇒ (ik ∣L) ∧ (ij ∣kL)
(ij ∣kL) ∧ (ik ∣jL) ⇒ (ij ∣L) ∧ (ik ∣L)
(ij ∣L) ∧ (ik ∣L) ⇒ (ij ∣kL) ∧ (ik ∣jL)

This yields the definition of gaussoids.
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CI inference via SAT solvers

Since gaussoids have a finite axiomatization, a SAT solver like CaDiCaL can deduce
implications under the gaussoid axioms:

(12∣) ∧ (13∣4) ∧ (14∣5) ∧ (15∣23) ∧ (23∣5) ∧ (24∣135) ∧ (34∣12) ∧ (35∣1) ∧ (45∣2)
⇒ nothing.

The structure on the left is a gaussoid. In this case, the semimatroid axioms were stronger
and deduced more CI statements which hold on every Gaussian distribution which satisfies
the left-hand side statements.
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Oriented gaussoids

Σ[kL] ⋅Σ[ij ∣L] = Σ[L] ⋅Σ[ij ∣kL] +Σ[ik ∣L] ⋅Σ[jk ∣L]

What if we only knew that all sgn Σ[K ] = +1 and the value of sgn Σ[ij ∣K ] for every (ij ∣K)?

+(ij ∣L) ∧ −(ij ∣kL) ⇒ [+(ik ∣L) ∧ +(jk ∣L)] ∨ [−(ik ∣L) ∧ −(jk ∣L)]

→ Oriented and orientable gaussoids.

(ij ∣L) ∧ (kl ∣L) ∧ (ik ∣jlL) ∧ (jl ∣ikL) ⇒ (ik ∣L)
(ij ∣L) ∧ (kl ∣iL) ∧ (kl ∣jL) ∧ (ij ∣klL) ⇒ (kl ∣L)
(ij ∣L) ∧ (jl ∣kL) ∧ (kl ∣iL) ∧ (ik ∣jlL) ⇒ (ik ∣L)
(ij ∣kL) ∧ (ik ∣lL) ∧ (il ∣jL) ⇒ (ij ∣L)
(ij ∣kL) ∧ (ik ∣lL) ∧ (jl ∣iL) ∧ (kl ∣jL) ⇒ (ij ∣L)
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CI inference via SAT solvers II

Running the SAT solver CaDiCaL on the definition of oriented gaussoids confirms that
on their supports

(12∣) ∧ (13∣4) ∧ (14∣5) ∧ (15∣23) ∧ (23∣5) ∧ (24∣135) ∧ (34∣12) ∧ (35∣1) ∧ (45∣2)
⇒ everything except (25∣K) for all K .

This inference rule is valid for all Gaussian distributions and as strong as possible.

Theorem (B. 2021+)

Orientable gaussoids have no finite complete axiomatization.
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The search for inference rules

Inference rules help characterize the realizable CI structures:

● 3-variate: 11 out of 64 by Matúš 2005.

● 4-variate: 629 out of 16 777 216 by Lněnička and Matúš 2007.
● 5-variate: open!

● 254 826 gaussoids modulo symmetry
● 87 792 of which are orientable semimatroids
● 84 434 of which are selfadhesive orientable semimatroids.

Help wanted:

● Use finer approximations to M ∨ from the literature.

● Non-linear information inequalities → Ahmadieh and Vinzant 2021.

● Tropical approximations and valuated gaussoids.

● Compute algebraic realization spaces.

● Find and certify real solutions to polynomial systems.
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On Gaussian conditional independence structures.

Kybernetika, 43(3):327–342, 2007.

24 Tobias Boege // The Gaussian CI inference problem

https://arxiv.org/abs/2105.13444
https://arxiv.org/abs/2103.02589
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