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Entropy

Let X be a random variable taking finitely many values {1,...,d} with positive
probabilities. Its Shannon entropy is

d
H(X) = p(X = i)log1/o(x = ).

i=1

» H is continuous on A(d) and analytic on the interior.
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Let X be a random variable taking finitely many values {1,...,d} with positive
probabilities. Its Shannon entropy is

d
H(X) = p(X = i)log1/o(x = ).

i=1
» H is continuous on A(d) and analytic on the interior.

» A random vector X € A(d; : i € N) is a random variable in A([[;cy di).
so the definition of H extends to vectors.

» For a random vector X = (X; : i € N) we have 2V marginals
and we collect their entropies in an entropy profile hy : 2N — R.

» For example (X, Y) has entropy profile (0, H(X), H(Y), H(X, Y)) € R*.



Entropy as information
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Figure: Entropy of a binary random variable X as a function of p = p(X = heads).
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The entropy region and information inequalities

Let HY C R2" consist of all hx where X is an N-variate discrete random vector. H}, is
the image of Uy _; ---Ug =1 A(d1, ..., dp) under the transcendental map X > hx.
b

Problem

Find a description of the boundary of H3. MN\NV

» Applications in cryptography, coding theory, engineering want to optimize
linear functions over Hy,.

Theorem

H3, is a convex cone of dimension 2N — 1. Furthermore relint(H}) C Hj,.

» Elements of the dual cone (linear information inequalities) can give bounds for
optimization problems.
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Shannon inequalities

» A function h: 2N — R is a polymatroid if
» h(0) =0,
» h(l| K):= h(IK) — h(K) > 0 for disjoint | and K,
> h(l:J| K) = h(IK) + h(JK) — h(1JK) — h(K) > 0 for disjoint I, J, K.

» The set Py of polymatroids is a polyhedral cone in R2" and Py 2D Hifv — ITIP.
» The information inequalities in the dual cone of Py are the Shannon inequalities.

Theorem ([Mat07])
H}, is not polyhedral for |N| > 4.

» Conjecture: H}, is not semialgebraic for |[N| > 4.
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Independence: geometry <> information theory

Information-theoretical “special position” properties of discrete random variables can
be formulated in terms of linear functionals on the entropy profile hx:

Rank condition Matroid concept | Information theory concept
h(i)=0 loop constant random variable
h(N) = h(i) + h(N '\ i) | coloop max. private information
h(i| K)=0 closure operator | functional dependence
h(K) = > yck h(k) independent set | total independence
h(i:j|K)=0 modular pair conditional independence

All of these are linear on H*. Even though entropy is a transcendental function,
many of these conditions are polynomial in the probabilities — algebraic statistics.



Beyond Shannon: Extension properties

All widely used polyhedral outer approximations to Hi",‘v which improve upon Py
are derived from an extension property which is a theorem of the form:

» If h € H%,, then there exists h € T’,‘VI for some M O N such that E|N =h

and some other linear conditions ¢(h) > 0 hold.



Beyond Shannon: Extension properties

All widely used polyhedral outer approximations to Hi’,"v which improve upon Py
are derived from an extension property which is a theorem of the form:

» If h € H%,, then there exists h € T’,‘VI for some M O N such that E|N =h

and some other linear conditions ¢(h) > 0 hold.

» The extension property is encapsulated in its cone E{f = { h € Hy, | o(h) >0}.




Beyond Shannon: Extension properties

All widely used polyhedral outer approximations to Hi’,“v which improve upon Py
are derived from an extension property which is a theorem of the form:

» If h € H%,, then there exists h € T’,‘VI for some M O N such that E|N =h

and some other linear conditions ¢(h) > 0 hold.

» The extension property is encapsulated in its cone E{f = { h € Hy, | o(h) >0}.

Extension principle: Let E,’\‘,/’ be the cone of an extension property and
7M. R2" - R?" the canonical projection. Then H}, C wM(EM).
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Extension properties: Conditional product aka Copy lemma

» Consider h € Py and pick any L C N.
» An L-copy of N is a set M with |[N| = |M| and NN M = L with a bijection
o : N — M fixing L pointwise. This induces an L-copy of h: o(h) € Pp.

The Copy lemma states:
> LethEWRand LCN, fix an L-copy 0 : N — M of N.

» There exists h € |Hy,, |such that

Rly=h, hlm=o(h), A(N:M]|L)=o0.

» Relaxation: only require h € ! This gives a tighter inner bound
Py 2 NicnSk 2 HY,. Exploited numerous times: [DFZ11], [Boe23], ..
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Extension properties: Ahlswede—Korner & Slepian—Wolf

The Ahlswede—Kérner lemma states:

> LethEHi}kVandJ K CN.
» There exists h € H , such that

hly=h, h(z|K)=0, h(l|z)=h(I|J) forevery | C K.

The Slepian—Wolf lemma states:

» Let he Hj and J,K C N.
» There exists h € H},, such that

Rln=h h(z|K)=0, h(z)=h(K|J), hK]|Jz)=0.
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» Several infinite families of information inequalities are derived from only the Copy
lemma. They have been tabulated but are not available FAIRly — GMM problem.
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al(A; B)
bI(A; B|C) + el (A: C|B) + =1(B: C|A)
eI(A:BID) + f1(A: D|R)
(0 +d" + 2)[(B; D|A) + hi(C; D)
i(C: D|A) +z1(C; D|B)
a'l(A; B)
VI(A; BIC) + ¢ I(A;C|B) + d'I(B:C|A)
e'I(A: B|D) + ['I(A; D|B) + ¢'I1(B: D|A)
HIC; D) +i'1(C; D|A) + j'1(C: D|B)

(a+a +2) (A B)
(a+b+c+f+b + 25 BIC)
(—a+b+c+e+c +2)I(A;C|B)

(& + 2)I(B:C|A) + (e +¢ + 2)[(4; B|D)
(f + /(A D|B)

(—a" + b+ + g +i")[(B; D|4)
(h+ B +2)[(C; D) + (i + )I(C; D|A)
(7)1(C:D|B)

is capy of C'D over AB

Substitutions: A C R S; AD BR S

Abbreviated Proof of (75): T: D-copy of A over BCRS.
LI: -ac. +c.d. +rcd.a +c.s.a +b.d.s +a.bs.d +2a.cr.bs +a.bs.cr
+d.r.abes +d.s.aber
SL1: d.t.a +c.d.t +a.ted +c.r.t +a.ter +d.ract +b.t.acdr +a.t.bs
+c.s.at +btacs +d.ts 4asdt +b.d.ast +c.tabds +arbest
+r.ad.best +s.ad.bert +d.t.abers C2L1: 3t.ad.bers
S: C-copy of A over BDR.

L2: -2a.c. +2cd. +ab.cr +2a.c.br +carb +ab.dr +4a.d.br
+2a.br.d +2d.br.a +2r.cd.a +d.r.abe

SL2: c.s.b +ab.es +c.d.s +as.cd +d.s.abe +3a.s.br 4+3c.s.br
+c.rabs +d.ors +asdr +drabs +d.bras +crads +b.s.acdr
+2c.s.abdr +2d.s.aber

C2L2: 7s.ac.bdr

R: D-copy of C over AB.

S: cra +3crb +dra +7drb +cdr +2bracd +rab.ed
+9c.r.abd +3d.r.abe

C2: l6r.cd.ab
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Outlook

» There exist many more extension properties for linear or algebraic representability
of matroids (stronger properties than H*).

» Several infinite families of information inequalities are derived from only the Copy
lemma. They have been tabulated but are not available FAIRly — GMM problem.

» Want a framework to combine and iterate extension properties based on polyhedra
and linear programming and certificates for the validity of information inequalities.

Thank youl!
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