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Entropy

Let X be a random variable taking finitely many values {1, . . . , d} with positive
probabilities. Its Shannon entropy is

H(X) :=
d∑

i=1
p(X = i) log 1/p(X = i).

I H is continuous on ∆(d) and analytic on the interior.

I A random vector X ∈ ∆(di : i ∈ N) is a random variable in ∆(
∏

i∈N di),
so the definition of H extends to vectors.

I For a random vector X = (Xi : i ∈ N) we have 2N marginals
and we collect their entropies in an entropy profile hX : 2N → R.
I For example (X ,Y ) has entropy profile (0,H(X),H(Y ),H(X ,Y )) ∈ R4.
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Entropy as information
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Figure: Entropy of a binary random variable X as a function of p = p(X = heads).
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The entropy region and information inequalities

Let H∗
N ⊆ R2N consist of all hX where X is an N-variate discrete random vector. H∗

N is
the image of

⋃∞
d1=1 · · ·

⋃∞
dn=1 ∆(d1, . . . , dn) under the transcendental map X 7→ hX .

Problem
Find a description of the boundary of H∗

3.

I Applications in cryptography, coding theory, engineering want to optimize
linear functions over H∗

N .

Theorem
H∗

N is a convex cone of dimension 2N − 1. Furthermore relint(H∗
N) ⊆ H∗

N .

I Elements of the dual cone (linear information inequalities) can give bounds for
optimization problems.
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Shannon inequalities

I A function h : 2N → R is a polymatroid if
I h(∅) = 0,
I h(I | K) := h(IK)− h(K) ≥ 0 for disjoint I and K ,
I h(I : J | K) := h(IK) + h(JK)− h(IJK)− h(K) ≥ 0 for disjoint I, J , K .

I The set PN of polymatroids is a polyhedral cone in R2N and PN ⊇ H∗
N → ITIP.

I The information inequalities in the dual cone of PN are the Shannon inequalities.

Theorem ([Mat07])
H∗

N is not polyhedral for |N| ≥ 4.

I Conjecture: H∗
N is not semialgebraic for |N| ≥ 4.
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Independence: geometry ↔ information theory

Information-theoretical “special position” properties of discrete random variables can
be formulated in terms of linear functionals on the entropy profile hX :

Rank condition Matroid concept Information theory concept
h(i) = 0 loop constant random variable
h(N) = h(i) + h(N \ i) coloop max. private information
h(i | K) = 0 closure operator functional dependence
h(K) =

∑
k∈K h(k) independent set total independence

h(i : j | K) = 0 modular pair conditional independence

All of these are linear on H∗. Even though entropy is a transcendental function,
many of these conditions are polynomial in the probabilities → algebraic statistics.
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Beyond Shannon: Extension properties

All widely used polyhedral outer approximations to H∗
N which improve upon PN

are derived from an extension property which is a theorem of the form:

I If h ∈ H∗
N , then there exists h ∈ H∗

M for some M ⊇ N such that h|N = h
and some other linear conditions ϕ(h) ≥ 0 hold.

I The extension property is encapsulated in its cone EM
N = { h ∈ H∗

M : ϕ(h) ≥ 0 }.

Extension principle: Let EM
N be the cone of an extension property and

πM
N : R2M → R2N the canonical projection. Then H∗

N ⊆ πM
N (EM

N ).
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Extension properties: Conditional product aka Copy lemma

I Consider h ∈ PN and pick any L ⊆ N.
I An L-copy of N is a set M with |N| = |M| and N ∩ M = L with a bijection

σ : N → M fixing L pointwise.

This induces an L-copy of h: σ(h) ∈ PM .

The Copy lemma states:

I Let h ∈ H∗
N and L ⊆ N, fix an L-copy σ : N → M of N.

I There exists h ∈ H∗
NM such that

h|N = h, h|M = σ(h), h(N : M | L) = 0.

I Relaxation: only require h ∈ PNM ! This gives a tighter inner bound
PN ⊇ ∩L⊆NSL

N ⊇ H∗
N . Exploited numerous times: [DFZ11], [Boe23], …
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Extension properties: Ahlswede–Körner & Slepian–Wolf

The Ahlswede–Körner lemma states:
I Let h ∈ H∗

N and J ,K ⊆ N.
I There exists h ∈ H∗

Nz such that

h|N = h, h(z | K) = 0, h(I | z) = h(I | J) for every I ⊆ K .

The Slepian–Wolf lemma states:
I Let h ∈ H∗

N and J ,K ⊆ N.
I There exists h ∈ H∗

Nz such that

h|N = h, h(z | K) = 0, h(z) = h(K | J), h(K | Jz) = 0.
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Outlook

I There exist many more extension properties for linear or algebraic representability
of matroids (stronger properties than H∗).

I Several infinite families of information inequalities are derived from only the Copy
lemma. They have been tabulated but are not available FAIRly → GMM problem.

I Want a framework to combine and iterate extension properties based on
polyhedra and linear programming.

Thank you!
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