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The mantra of algebraic statistics

Statistical models are semialgebraic sets1

The set of all distributions of two independent
binary random variables (X ,Y ) is a surface in
the probability simplex defined by

P(X = 0,Y = 0) ⋅ P(X = 1,Y = 1) =
P(X = 0,Y = 1) ⋅ P(X = 1,Y = 0).

1sometimes
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The mantra of algebraic statistics

Statistical models are semialgebraic sets1

The set of all distributions of two independent
binary random variables (X ,Y ) is a surface in
the probability simplex defined by

p00 ⋅ p11 = p01 ⋅ p10.

Also known as the Segre embedding of P1 × P1.

1sometimes
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Setup

▸ Consider discrete random variables Xj with state space [dj] = {1, . . . ,dj }.

▸ A probability distribution P is identified with the d1 × ⋅ ⋅ ⋅ × dn tensor of
atomic probabilities pi1...in ∶= P(X1 = i1, . . . ,Xn = in).

▸ The probability simplex is the set of all discrete distributions

∆ = ∆(d1,d2, . . . ,dn) = {P ∈ Rd1×⋅⋅⋅×dn ∶ P ≥ 0 and ∑P = 1}.

▸ A statistical model is a subset of ∆. E.g., the binary independence model

is the set of all 2 × 2 matrices P = (p00 p01

p10 p11
) in ∆(2,2) such that detP = 0.
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A random graph model

The binary random variables (Xe)e∈E(G) pick a
random subgraph such that appearances of edges
which do not contain a cycle are completely
independent.

This describes a statistical model in ∆(2,2, . . . ,2).
A point in the model is a probability distribution
whose outcomes are graphs on four vertices.
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Marginal independence models: Definition

In this talk, a simplicial complex is a collection Σ of subsets of [n] such that:

▸ {i } ∈ Σ for all i ∈ [n],
▸ τ ⊆ σ ∈ Σ⇒ τ ∈ Σ.

Definition

The marginal independence modelMΣ is the set of distributions of (X1, . . . ,Xn)
in ∆(d1, . . . ,dn) such that Xσ is completely independent for all σ ∈ Σ.

▸ The random subgraph model is a marginal independence model where Σ is
the simplicial complex of all forests in the graph.
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Marginal independence models: Algebra

A subvector Xσ, σ ⊆ [n], is completely independent if for all choices ij ∈ [dj]:

P(Xj = ij ∶ j ∈ σ) =∏
j∈σ

P(Xj = ij).

That is, the marginal distribution Pσ of Xσ is a tensor of rank 1.

Implicitization of the above parametrization gives the equations of the
Segre variety ⨉j∈σ Pdj−1 in P∏j∈σ dj − 1.
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Not to be confused with: Hierarchical models

Hierarchical models are also derived from simplicial complexes but their
parametrization is:

P(Xj = ij ∶ j ∈ [n]) = ∏
σ facet of Σ

θ
(σ)
iσ
.

▸ Parametrization is for the entire tensor instead of marginals.

▸ One set of parameters per facet instead of faces factorizing.
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Example: Σ = [12,13,23]

▸ The hierarchical model is known as the “no 3-way interaction model”

pijk = θ
(12)
ij θ

(13)
ik θ

(23)
jk .

For binary variables, its complex variety has dimension 7 and degree 4.
It is cut out by the quartic p000p011p101p110 − p001p010p100p111.

▸ The marginal independence is given implicitly by factorizations of marginal
distributions

∑
k

pijk = ∑
j ,k

pijk ⋅ ∑
i ,k

pijk , ∑
j

pijk = ∑
j ,k

pijk ⋅ ∑
i ,j

pijk , ∑
i

pijk = ∑
i ,k

pijk ⋅ ∑
i ,j

pijk .

Its dimension is 5 and it has degree 8.
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Kirkup’s parametrization

Lemma (Kirkup (2007))

The marginal independence model equalsMΣ = S + LΣ where LΣ is the linear
subspace with marginals Pσ = 0 for all σ ∈ Σ.

Proof.

▸ Given P ∈ MΣ, take its marginals Pj , j ∈ [n], corresponding to the distributions
of the individual random variables Xj .

▸ P ′ = ⊗j Pj ∈ S and P − P ′ ∈ LΣ since P and P ′ have identical marginals and
Pσ and P ′

σ are both completely independent.

Note: This parametrization is just P =MLES(P) + correction term.
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Möbius coordinates

The defining ideal of MΣ is generated by homogeneous, quadratic polynomials
coming from the Segre equations for each σ ∈ Σ, e.g., for Σ = [12,13,23],

p000p110 + p001p110 + p000p111 + p001p111 = p010p100 + p011p100 + p010p101 + p011p101 (1á 2)

p000p101 + p010p101 + p000p111 + p010p111 = p001p100 + p011p100 + p001p110 + p011p110 (1á 3)

p000p011 + p011p100 + p000p111 + p100p111 = p001p010 + p010p101 + p001p110 + p101p110 (2á 3)



9 / 16

Möbius coordinates

The defining ideal of MΣ is generated by homogeneous, quadratic polynomials
coming from the Segre equations for each σ ∈ Σ, e.g., for Σ = [12,13,23],

q∅q12 = q1q2 (1á 2)

q∅q13 = q1q3 (1á 3)

q∅q23 = q2q3 (2á 3)

In the Möbius coordinates q●, the ideal becomes toric.
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Toric representation theorem

Theorem

The variety of the marginal independence modelMΣ is irreducible and its prime ideal
is toric in Möbius coordinates. That is, it has a parametrization by monomials and its
ideal is generated by binomials. The parametrization is

qi1...in ↦ ∏
j ∶ij /=+

θ
(j)
ij

for {j ∶ ij /= +} ∈ Σ.

Moreover, the statistical modelMΣ is a contractible semialgebraic set of dimension

n

∑
j=1

(dj − 1) + ∑
τ/∈Σ
∏
j∈τ

(dj − 1).
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Marginal independence models: Properties

▸ Nice parametrization as Segre + linear space.

▸ Nice binomial equations in Möbius
coordinates (but degrees can be high).

▸ Contractible statistical models.

▸ Stratify the probability simplex.

▸ Contain our random graph models and more!

[123] = S

[12,13,23]

[12,13] [12,23] [13,23]

[3,12] [2,13] [1,23]

[1,2,3] = ∆
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Better coordinates for conditional independence ideals

Consider the constraints {X1 áX2,X1 áX2 ∣ (X3,X4),X1 áX4,X2 áX4,X3 áX4 }
on four binary random variables. Does there exist a distribution which satisfies
all of them and no others?

p0100p1000 = p0000p1100, p0101p1001 = p0001p1101, p0110p1010 = p0010p1110, p0111p1011 = p0011p1111

p0100p1000 + p0101p1000 + p0110p1000 + p0111p1000 + p0100p1001 + p0101p1001 + p0110p1001 + p0111p1001+

p0100p1010 + p0101p1010 + p0110p1010 + p0111p1010 + p0100p1011 + p0101p1011 + p0110p1011 + p0111p1011 =

p0000p1100 + p0001p1100 + p0010p1100 + p0011p1100 + p0000p1101 + p0001p1101 + p0010p1101 + p0011p1101+

p0000p1110 + p0001p1110 + p0010p1110 + p0011p1110 + p0000p1111 + p0001p1111 + p0010p1111 + p0011p1111

p0001p1000 + p0011p1000 + p0101p1000 + p0111p1000 + p0001p1010 + p0011p1010 + p0101p1010 + p0111p1010+

p0001p1100 + p0011p1100 + p0101p1100 + p0111p1100 + p0001p1110 + p0011p1110 + p0101p1110 + p0111p1110 =

p0000p1001 + p0010p1001 + p0100p1001 + p0110p1001 + p0000p1011 + p0010p1011 + p0100p1011 + p0110p1011+

p0000p1101 + p0010p1101 + p0100p1101 + p0110p1101 + p0000p1111 + p0010p1111 + p0100p1111 + p0110p1111

⋯⋯⋯
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Better coordinates for conditional independence ideals

Consider the constraints {X1 áX2,X1 áX2 ∣ (X3,X4),X1 áX4,X2 áX4,X3 áX4 }
on four binary random variables. Does there exist a distribution which satisfies
all of them and no others?

q3q4q1234 = q134q234

q3q123q4 + q13q23 + q134q234 + q3q1234 = q3q4q1234 + q3q123 + q23q134 + q13q234

q1q2q
2
4 + q3q4q124 + q134q234 + q4q1234 = q2q4q134 + q1q4q234 + q3q4q1234 + q4q124

q1q2q
2
4 + q1q2q3 + q2q13q4 + q1q23q4 + q3q123q4 + q3q4q124 + q13q23 + q2q134+

q1q234 + q134q234 + q3q1234 + q4q1234 + q123 + q124 =
q1q2q3q4 + q1q2q4 + q2q4q134 + q1q4q234 + q3q4q1234 + q2q13 + q1q23 + q3q123+

q123q4 + q3q124 + q4q124 + q23q134 + q13q234 + q1234.
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Better coordinates for conditional independence ideals

Consider the constraints {X1 áX2,X1 áX2 ∣ (X3,X4),X1 áX4,X2 áX4,X3 áX4 }
on four binary random variables. Does there exist a distribution which satisfies
all of them and no others? Yes!

q1234 =
q134q234

q3q4

q123 =
q4q13q23 − q4q13q234 − q4q134q23 + q134q234

q3q4(1 − q4)

q124 =
q134q234 − q134q2q3q4 − q1q234q3q4 + q1q2q3q

2
4

q3q4(1 − q3)

q134 =
q13((q234q4 − q2q3q

2
4) − (q23q4 − q2q3q4)) + q1q3q4(1 − q4)(q23 − q2q3(q234 − q23q4))

q234 − q23q4
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Parameter estimation

Given a statistical model M and a sample distribution U ∈ ∆, we seek the point
in M which best “explains” the observations in U.

▸ Maximum likelihood: max∑u● log p● s.t. P ∈ M.

▸ Euclidean distance: min∑∥u● − p●∥2 s.t. P ∈ M.

For M= S(2,2,2), i.e., Σ = [123], and U = (2−1,2−2,2−3,2−4,2−5,2−6,2−7,2−7):

Deg # Real p̂000 p̂001 p̂010 p̂011 p̂100 p̂101 p̂110 p̂111

ED 17 1 0.500 0.250 0.125 0.062 0.032 0.016 0.008 0.004
ML 1 1 0.496 0.250 0.126 0.063 0.033 0.016 0.008 0.004

Computed using HomotopyContinuation.jl.

https://www.juliahomotopycontinuation.org
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Database of small models

https://mathrepo.mis.mpg.de/MarginalIndependence

dimension degree mingens f-vector simplicial complex Σ ED ML
15 1 () (1,4)5 [1,2,3,4] 1 1
14 2 (1) (1,4,1)6 [3,4,12] 5 1
13 3 (3) (1,4,2)7 [4,12,13] 5 9
13 4 (2) (1,4,2)7 [14,23] 25 1041
12 4 (6) (1,4,3)8 [12,13,14] 5 209
12 5 (5) (1,4,3)8 [12,14,23] 21 1081
12 5 (5) (1,4,3)8 [4,12,13,23] 21 17

⋯
8 16 (21) (1,4,6,1)12 [14,24,34,123] 117 8542
7 18 (28) (1,4,6,2)13 [34,123,124] 89 2121
6 20 (36) (1,4,6,3)14 [123,124,134] 89 505
5 23 (44) (1,4,6,4)15 [123,124,134,234] 169 561
4 24 (55) (1,4,6,4,1)16 [1234] 73 1

https://mathrepo.mis.mpg.de/MarginalIndependence
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Open ends

▸ The CI model of 1á {2,3} is not of marginal independence type but nevertheless
it is toric in Möbius coordinates: q12 = q1q2, q13 = q1q3, q123 = q1q23 . . .

▸ Kirkup: Is the toric variety of MΣ always Cohen-Macaulay?

▸ Side story: Entropic matroids.

▸ Are the open models MΣ ∩∆○ smooth manifolds?

▸ How to select a fitting marginal independence model for given data?

▸ Is the real solution to the affine ED problem generically unique?
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Tobias Boege, Sonja Petrović, and Bernd Sturmfels. “Marginal
Independence Models”. In: Proceedings of the 2022 International
Symposium on Symbolic and Algebraic Computation. ISSAC ’22.
Villeneuve-d’Ascq, France: Association for Computing Machinery (ACM),
2022, pp. 263–271. doi: 10.1145/3476446.3536193.

Mathias Drton and Thomas S. Richardson. “Binary models for marginal
independence”. In: J. R. Stat. Soc., Ser. B, Stat. Methodol. 70.2 (2008),
pp. 287–309. doi: 10.1111/j.1467-9868.2007.00636.x.

George A. Kirkup. “Random variables with completely independent
subcollections”. In: J. Algebra 309.2 (2007), pp. 427–454. doi:
10.1016/j.jalgebra.2006.06.023.

Seth Sullivant. Algebraic Statistics. Vol. 194. Graduate Studies in
Mathematics. American Mathematical Society, 2018.

https://doi.org/10.1145/3476446.3536193
https://doi.org/10.1111/j.1467-9868.2007.00636.x
https://doi.org/10.1016/j.jalgebra.2006.06.023

	References

