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» A linear structural equation model defines random
variables X recursively via a directed acyclic graph
G = (V, E) and Gaussian noise:

Xj= Y AiXite e~ N(Ow)
i€pa(j)

» Parents of node j are regarded as direct causes of j.

» The vector X is again Gaussian with mean zero. Since G is acyclic, we can solve
for the covariance matrix ¥:

Y=0U-N"TQU-N"1, with A € RE and Q = diag(w).

» All such matrices form the model M(G) C PDy,.
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Properties of DAG models

» M(G) is a smooth submanifold of PDy and its Zariski closure is irreducible.
» The parameters (w, ) are rationally identifiable.
» The model is equivalently given by the Markov properties of the DAG, e.g.,
M(G) ={X € PDy :i 1 j|pa(j) whenever jj & E}.
» Almost all distributions in M(G) are faithful to G, i.e., do not satisfy more
Cl statements than the global Markov property.

» Model equivalence M(G) = M(H) is combinatorially characterized:
if and only if G and H have the same skeleton and v-structures.

» Markov equivalence = ambiguity about the direction of causality.
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» In a colored Gaussian DAG model, the vertices and

edges of G are partitioned into color classes via a
coloring function c: VU E — Cy U Cg.

» The parametrization ¥ = (/ — A)~TQ(/ — A)~! stays
the same but we reduce the parameter space: w; = w;
if c(i) = c(j) and \jj = Ay if c(ij) = c(kI).

» This restricts the parameters to a = linear subspace <

» Vertex-only colorings correspond to partial homoscedasticity [WD23].
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Coloring can disambiguate the causal structure

» Coloring reduces Markov-equivalence classes which eases causal discovery.
» The vanishing ideal in both cases is The first vanishing ideal is:
hsjp = ( 013022 — 012023 ) hspp + { 012022 — 011023, 0%, — 011013 )

» Generator is invariant under 1 < 3. » Not invariant anymore.
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» It follows from the recursive factorization and some linear algebra that
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» A set A is identifying for a vertex j resp. edge ij if
wj = J-|A(Z) resp. \j = )\,-J-|A(Z)

for all ¥ € M(G).
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Theorem
Let G = (V,E) be a DAG. Then:
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wj = wjja(X) for every ¥ € M(G) if and only if pa(j) C A C V '\ de(j). [WD23]

Ifij & E, then A\j = 0 = \jjja(X) for every ¥ € M(G) if and only if A\i d-separates
i and j in G. [Folklore]

If ij € E, then \j = \jja(X) for every ¥ € M(G) if and only if i € A C V \ de())
and A\ i d-separates i and j in the graph Gji which arises from G by deleting the
edge ij and the vertices de(j).

The polynomials ver(ifA, j|B) = [Zal[Xg|(wija — wjjs) resp.
ecr(ij|A, kl|B) = |Xal|Z8|(Nja — Awig) vanish on the model M(G, c)
whenever c(i) = c(j) resp. c(ij) = c(kl) and A and B are identifying.
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For every colored DAG (G, c) the model M(G, c) has irreducible Zariski closure and
is a smooth submanifold of PDy. It is diffeomorphic to an open ball of dimension
ve + ec (the number of vertex- and edge-color classes).

Theorem
The vanishing ideal Pg . of M(G,c) is (Ig + Ic) : S¢ where:
» I = (|Zijpa(j)| : ii & E) is the conditional independence ideal of G,

> I = (ver(ilpa(i), jlpa(j)) : (i) = c(j)) + {ecr(ij|pa(j), kl|pa(/)) : c(ij) = c(kI))
is the coloring ideal of G,

> Sc = {I[Tjcv |Zpa()|¥ : kj € N} is the monoid of parental principal minors.

» Resolves the colored generalization of a conjecture of Sullivant; see also [RP14].
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Lemma
Let R, R’ be rings, S C R multiplicatively closed, and:
» maps¢p: R — R and ¢ : R' — STIR with ¢ o ¢ = idpg,
» for a prime ideal I' = (fi,. .., fx), write {)(f;) = &/ and set J = (g;).
If I := ¢~ 1(I') € Spec(S~*R/J), then | = J : S.
» For example, ¢ = parametrization of M(K,), 1) = parameter identification map

and /" = linear equations on parameters from missing edges and color classes.

» The lemma computes the vanishing ideal up to a saturation of rationally
identifiable models with additional equation constraints.

» Knowing a parametrization and generators for the vanishing ideal up to saturation
is sufficient in practice for model distinguishability.

» Conceivable to extend to non-linear equations and inequalities.
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Faithfulness

Fix a colored DAG (G, c) and ¥ € M(G,c).

» Y is faithful to G if it satisfies no more Cl statements than the d-separations in G.
» > is faithful to c if it satisfies no more ver or ecr relations than those from c.

Theorem ([WD23; STD10])

» Generic ¥ € M(G,c) is faithful to c.
» Generic ¥ € M(G,c) is faithful to G if c is a vertex-coloring or an edge-coloring.

2 5 4—?1
» The example on the right colors vertices and edges. .

The generic matrix in the model satisfies 1 Il 4 | 5.
No faithful distribution!
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Structure identifiability

Theorem ([WD23])

If (G, c) and (H, c) are vertex-colored DAGs, then M(G, c) = M(H, c) if and only if
G and H are Markov-equivalent and pac(j) = pay(j) for all j € V with |c71(j)| > 2.

An edge-colored DAG (G, ¢) is BPEC if:
» proper: all edge color classes have size at least two,

» blocked: color classes partition parent sets of nodes.

Theorem

If (G, c) and (H,d) are two BPEC-DAGs, then M(G,c) = M(H,d) implies
(G,c) = (H,d). In particular, the Markov-equivalence classes of BPEC-DAGs are
singletons and the causal structure is identifiable.
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