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Entropy profiles

Let ξ be a random variable taking finitely many values {1, . . . , d} with probabilities pi .

▶ Its Shannon entropy is

H(ξ) := −
d∑

i=1

pi log pi , where 0 log 0 := 0.

▶ A random vector ξ = (ξi : i ∈ N) has 2N marginals.

▶ The collection of all the marginal entropies is the entropy profile hξ : 2N → R.

▶ Entropy profiles are “rank functions”: monotone and submodular.
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Entropy as information
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Figure: Entropy of a binary random variable ξ as a function of p = p(ξ = heads).
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Special position for random variables

Entropy profile encodes qualitative information about the system of random variables:

▶ Subvector ξI is functionally dependent on ξK if and only if hξ(I ∪ K) = hξ(K).

▶ Subvectors ξI and ξJ are conditionally independent given ξK if and only if
hξ(I ∪ K) + hξ(J ∪ K) = hξ(I ∪ J ∪ K) + hξ(K).

Many applications deal with random vectors only through their entropy profiles:

▶ Graphical models in statistics and causality are defined by CI assumptions
(e.g., Bayesian networks and d-separation in graphs).

▶ Cryptographic protocols use FD and CI constraints to specify operation and
information-theoretic security (e.g., secret sharing).

▶ Quantities in information theory are defined by linear optimization over entropy
profiles with FD and CI constraints (e.g., common information).
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Example: Perfect secret sharing

▶ Given: participants N = {1, . . . , n} and a set of qualified subsets Q ⊆ 2N .

▶ Devise a scheme to distribute shares sp of a randomly generated secret s
to the participants such that

▶ sp is a function of s,

▶ s is a function of sA = (sp : p ∈ A) whenever A ∈ Q,

▶ s is independent of sB whenever B ̸∈ Q.

▶ The information ratio is σ(h) = 1/h(s) max {h(p) : p ∈ N}.

▶ The optimal information ratio σ(Q) = inf {σ(h) : h |= Q} can be determined by
linear optimization over the set of all entropy profiles satisfying linear conditions.
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The entropy region and information inequalities

Let H∗
N ⊆ R2N consist of all hξ where ξ is an N-variate discrete random vector. H∗

N is
the image of

⋃∞
d1=1 · · ·

⋃∞
dn=1 ∆(d1, . . . , dn) under the transcendental map ξ 7→ hξ.

Theorem ([ZY97], [Mat07b])

H∗
N is a convex cone of dimension 2N − 1. Furthermore relint(H∗

N) ⊆ H∗
N .

▶ Linear optimization works well! Elements of the dual cone (linear information
inequalities) can give bounds for optimization problems.

▶ [DFZ11] contains over 200 inequalities and several parametric families.

Theorem ([Mat07a])

H∗
N is not polyhedral for |N| ≥ 4.
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A conditional information inequality

A conditional information inequality is an inequality valid for all entropy profiles
satisfying some linear equations.

H(A : B) = H(A : B | C ) = 0 =⇒ H(C : D | A) + H(C : D | B) + H(A : B) ≥ H(C : D) (1)

▶ This is useful in situations where A ⊥⊥ B and A ⊥⊥ B | C .

▶ A natural question is whether this inequality can be lifted to an unconditional one
by introducing Lagrange multipliers:

λH(A : B) + µH(A : B | C ) + H(C : D | A) + H(C : D | B) + H(A : B) ≥ H(C : D). (2)

▶ Kaced and Romashchenko [KR13] proved that (1) is essentially conditional,
i.e., there are no λ,µ ∈ R such that (2) holds.
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The Kaced–Romashchenko∗ configuration

Consider the affine plane over a finite field Fq.

▶ Choose two points A and B with different
x-coordinates uniformly at random.

▶ Draw the line C through A and B.

▶ Choose a non-degenerate parabola D
through A and B uniformly at random.

D

C

A

B

The coordinates of (A,B,C ,D) define the support of a distribution on
F2
q × F2

q × F2
q × F3

q and the distribution is uniform on this set.
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The Kaced–Romashchenko∗ configuration

▶ Elementary parameter counting yields

H(A : B) = H(A : B | C ) = log(q) − log(q − 1) and

H(C : D | A) = H(C : D | B) = log(q − 1) − log(q − 2).

▶ However, H(C : D) = log(q) − log(q − 1) + log(2). The log(2) term reflects that
only half of all pairs (C ,D) defined over Fq intersect in two Fq-rational points!

Hence, for this distribution

λH(A : B) + µH(A : B | C ) + H(C : D | A) + H(C : D | B) + H(A : B) − H(C : D)

= (λ+ µ) log

(
q

q − 1

)
+ 2 log

(
q − 1

q − 2

)
− log 2

which becomes negative for any λ,µ as q → ∞.
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An algebraic point of view

▶ Kaced and Romashchenko define an irreducible (quasiaffine) variety V
and equip its Fq-rational points with the uniform distribution → ξ(Fq).

▶ They use dimensions and facts from number theory to compute entropies.

▶ Clearly H(ξ(Fq)) = log|V (Fq)| → point counting!

▶ Entropies of marginals are more complicated. We have to deal with a coordinate
projection of V in which each point is weighted by the size of its fiber:
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Model theory of finite fields

Fq-definable sets are sets of the form φ(Fn
q ; b) = { a ∈ Fn

q : Fq |= φ(a, b) } where
φ(x1, . . . , xn, y1, . . . , ym) is a first-order formula in the language of rings and b ∈ Fm

q .

▶ More briefly: the smallest set of sets containing all varieties defined over Fq
and closed under complement and projection.

Theorem ([CDM92])

Consider a formula φ(x1, . . . , xn, y1, . . . , ym). There exist finitely many formulas
ψk(y1, . . . , ym), indexed by k ∈ K, with accompanying µk ∈ Q and dk ∈ N such that
for every sufficiently large finite field Fq and every b ∈ Fm

q :

▶ There exists a unique k ∈ K such that Fq |= ψk(b).

▶ Fq |= ψk(b) if and only if |φ(Fn
q ; b)| = µkq

dk + O(µkq
dk−1/2).
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Measure and decomposition

Definition

Let X be an F-definable set. A fiber decomposition with respect to πI (X ) is a finite
family of F-definable sets Yk , called cells,

together with non-negative µk ∈ Q and
dk ∈ N, for k ∈ K , such that for all sufficiently large G/F:

▶ GI =
⊔

k∈K Yk(G), and

▶ |X (G) ∩ π−1
I (a)| = µk |G|dk + O(µk |G|dk−1/2) for each a ∈ Yk(G).

Theorem ([FHJ94])

Fiber decompositions are computable. Moreover, one can compute a bound m ∈ N,
numbers dk ∈ N and non-negative µk ∈ Q such that for every finite extension G/F:

|X (G)| = µk |G|dk + O(µk |G|dk−
1/2), where k ≡ [G : F] (mod m).
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Computability of the entropy profiles

Theorem

Let X be an F-definable set in n free variables and ξ(G) the uniform distribution on
X (G). For a projection πI (X ) let (Yk : k ∈ K ), be a fiber decomposition and set
Xk = X ∩ π−1

I (Yk). For large enough G/F, the entropy profile satisfies

hξ(G)(I ) =
∑

dimG(Xk )=dimG(X )

µG(Xk)

µG(X )
log

(
µG(X )µG(Yk)

µG(Xk)
|G|dimG(Yk )

)
+ O

(
log |G|√

|G|

)
.

The leading term does not vanish, can be effectively computed from a defining formula
for X and is periodic in the extension degree [G : F].

▶ The sequence
(

1
log|G|hξ(G) : G ⊇ F

)
has finitely many convergent subsequences

and their (rational!) limits can all be computed.
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Algebraic matroids

Theorem

Moreover, if X is an F-irreducible algebraic variety, then there exists a tower of finite
fields F = G0 ⊆ G1 ⊆ . . . with

lim
n→∞

1

log |Gn|
hξ(Gn)(I ) = dimπI (X (F)), for every I ⊆ N.

Corollary ([Mat24])

Algebraic matroids are almost-entropic.

▶ Algebraic independence in the limit is explained through diminishing stochastic
dependence among the coordinate functions.

▶ Entropy profile can be seen as a “valuated” refinement of the algebraic matroid.
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Example using Galois stratification

▶ To eliminate x from the variety defined by x3 + ax2 + bx + c = 0, stratify the
triples (a, b, c) according to the number of rational roots of f (a, b, c) ∈ F[x ].

▶ Let Ω be the splitting field of f over F(a, b, c) with Galois group G = S3.

▶ If f (a, b, c) is separable, it defines a Galois extension of F with cyclic Galois
group G (a, b, c) ⊆ G .

▶ The number of rational roots of f (a, b, c) in F is determined by the splitting type
of f (a, b, c) in F[x ] which corresponds to the conjugacy class of G (a, b, c) in G .

▶ The Chebotarev density theorem computes the density of triples with given
conjugacy class C:

|C|
[Ω : F(a, b, c)]

=
|C|
6

,
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▶ To eliminate x from the variety defined by x3 + ax2 + bx + c = 0, stratify the
triples (a, b, c) according to the number of rational roots of f (a, b, c) ∈ F[x ].

▶ Let Ω be the splitting field of f over F(a, b, c) with Galois group G = S3.

▶ If f (a, b, c) is separable, it defines a Galois extension of F with cyclic Galois
group G (a, b, c) ⊆ G .

▶ The number of rational roots of f (a, b, c) in F is determined by the splitting type
of f (a, b, c) in F[x ] which corresponds to the conjugacy class of G (a, b, c) in G .

Splitting type [1, 1, 1] [1, 2] [3] [1, 12] [13]

Conjugacy class id (1 2) (1 2 3) − −
Density 1/6 3/6 2/6 0 0

Rational roots 3 1 0 2 1
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More details on Galois stratification

In greater generality, Galois stratification requires:

▶ Basic normal (irreducible) decomposition over F.

▶ Computing the splitting field Ω and Galois group G of a polynomial
over F(V ) where V is an irreducible F-variety.

▶ Computing the relative algebraic closure of F in Ω.

▶ Perhaps some relative integral closures of coordinate rings.

▶ Working with conjugacy classes of cyclic subgroups in G .

Algorithms are given in [FJ23] but with little regard for the state of the art in
computer algebra. Is it possible to produce an implementation in Oscar?
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▶ Working with conjugacy classes of cyclic subgroups in G .

Algorithms are given in [FJ23] but with little regard for the state of the art in
computer algebra. Is it possible to produce an implementation in Oscar?
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