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Matroids

▸ Matroids are combinatorial structures
which model “special position” relations
in geometry.

▸ For example the matroid of a set of
points in the projective plane records
which triples of points lie on a line.

▸ Non-realizability of matroids captures the
(non-obvious) laws of geometry.
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Entropy

Let X be a random variable taking finitely many values {1, . . . ,d} with positive
probabilities. Its Shannon entropy is

H(X) ∶=
d

∑
i=1

p(X = i) log 1/p(X = i).

▸ H is continuous on ∆(d) and analytic on the interior.

▸ A random vector X ∈ ∆(d1, . . . ,dn) is a random variable in ∆(∏n
i=1 di),

so the definition of H extends to vectors.

▸ For a random vector X = (X1, . . . ,Xn) we have 2n marginals
and we collect their entropies in an entropy vector hX ∶ 2[n] → R.
▸ For example (X ,Y) has entropy vector (0,H(X),H(Y),H(X ,Y)) ∈ R4.
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Entropy as information
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Figure: Entropy of a binary random variable X as a function of p = p(X = heads).
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Dictionary matroid theory — information theory

Information-theoretical “special position” properties of discrete random variables can
be formulated in terms of linear functionals on the entropy vector:

▸ h(x): rank → entropy

▸ h(x) = 0: loop → constant random variable

▸ h(x , y) = h(x): closure operator → functional dependence

▸ h(x , y) = h(x) = h(y): parallel → functional equivalence

▸ h(x , y) = h(x) + h(y): independence → independence

▸ h(x , y , z) + h(z) = h(x , z) + h(y , z): modular pair → conditional independence

Even though entropy is a transcendental function, many of these conditions are
polynomial in the probabilities → algebraic statistics.
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A glimpse at matroids in information theory

Entropy vectors are not matroids but polymatroids. Still, matroids and their
combinatorial theory are central to the subject:

Theorem ([Mat92])

If a matroid h is linear over a finite field of size q, then log(q) ⋅ h is entropic.

Theorem ([Mat17])

If h is algebraic, then it is almost-entropic.

Theorem ([Mat07])

Every entropy vector can be approximated by scaled factors of entropic matroids.



6 / 11

A glimpse at matroids in information theory

Entropy vectors are not matroids but polymatroids. Still, matroids and their
combinatorial theory are central to the subject:

Theorem ([Mat92])

If a matroid h is linear over a finite field of size q, then log(q) ⋅ h is entropic.

Theorem ([Mat17])

If h is algebraic, then it is almost-entropic.

Theorem ([Mat07])

Every entropy vector can be approximated by scaled factors of entropic matroids.



6 / 11

A glimpse at matroids in information theory

Entropy vectors are not matroids but polymatroids. Still, matroids and their
combinatorial theory are central to the subject:

Theorem ([Mat92])

If a matroid h is linear over a finite field of size q, then log(q) ⋅ h is entropic.

Theorem ([Mat17])

If h is algebraic, then it is almost-entropic.

Theorem ([Mat07])

Every entropy vector can be approximated by scaled factors of entropic matroids.



7 / 11

Basic computational challenges

Problem

Find/Sample positive points from conditional independence varieties.

Problem

Optimize a holonomic function subject to polynomial constraints.

Let H∗n ⊆ R2n
consist of all hX where X is an n-variate discrete random vector. H∗n is the

image of ⋃∞d1=1 ⋅ ⋅ ⋅ ⋃
∞

dn=1 ∆(d1, . . . ,dn) under the transcendental map X ↦ hX .

Problem

Find a description of the boundary of H∗3 .
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Entropy region and information inequalities

▸ H∗n is a finite-dimensional space which captures special position information for
all discrete random vectors of a fixed length (but unbounded state spaces).

▸ Applications in cryptography, coding theory, engineering want to optimize
linear functions over H∗n .

▸ Elements of the dual cone (information inequalities) can give bounds for
optimization problems.

Theorem ([Mat07])

H∗n is a convex cone of dimension 2n − 1. Furthermore relint(H∗n) ⊆ H∗n .

▸ Information inequalities completely describe the topological closure of H∗n
which makes them powerful tools in optimization.
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Ingleton inequality

Let A,B,C,D be subspaces in a finite-dimensional vector space.
Then the Ingleton inequality holds for h = dim:

I(AB∣CD) ∶=h(A,C) + h(B,C) + h(A,D) + h(B,D) + h(C,D) −

h(A,B) − h(C) − h(D) − h(A,C,D) − h(B,C,D) ≥ 0.

The Ingleton inequality fails in general for h = H but it has been discovered that certain
special position assumptions make it true even in the entropic setting, e.g.,

▸ If C áD then I(AB∣CD) ≥ 0.
▸ If AáC ∣ D and AáD ∣ C then I(AB∣CD) ≥ 0.
▸ . . .

These are conditional information inequalities and they can tell apart honest boundary
parts of H∗n from fake boundary parts on H∗n .



9 / 11

Ingleton inequality

Let A,B,C,D be subspaces in a finite-dimensional vector space.
Then the Ingleton inequality holds for h = dim:

I(AB∣CD) ∶=h(A,C) + h(B,C) + h(A,D) + h(B,D) + h(C,D) −

h(A,B) − h(C) − h(D) − h(A,C,D) − h(B,C,D) ≥ 0.

The Ingleton inequality fails in general for h = H but it has been discovered that certain
special position assumptions make it true even in the entropic setting, e.g.,

▸ If C áD then I(AB∣CD) ≥ 0.
▸ If AáC ∣ D and AáD ∣ C then I(AB∣CD) ≥ 0.
▸ . . .

These are conditional information inequalities and they can tell apart honest boundary
parts of H∗n from fake boundary parts on H∗n .



9 / 11

Ingleton inequality

Let A,B,C,D be subspaces in a finite-dimensional vector space.
Then the Ingleton inequality holds for h = dim:

I(AB∣CD) ∶=h(A,C) + h(B,C) + h(A,D) + h(B,D) + h(C,D) −

h(A,B) − h(C) − h(D) − h(A,C,D) − h(B,C,D) ≥ 0.

The Ingleton inequality fails in general for h = H but it has been discovered that certain
special position assumptions make it true even in the entropic setting, e.g.,

▸ If C áD then I(AB∣CD) ≥ 0.

▸ If AáC ∣ D and AáD ∣ C then I(AB∣CD) ≥ 0.
▸ . . .

These are conditional information inequalities and they can tell apart honest boundary
parts of H∗n from fake boundary parts on H∗n .



9 / 11

Ingleton inequality

Let A,B,C,D be subspaces in a finite-dimensional vector space.
Then the Ingleton inequality holds for h = dim:

I(AB∣CD) ∶=h(A,C) + h(B,C) + h(A,D) + h(B,D) + h(C,D) −

h(A,B) − h(C) − h(D) − h(A,C,D) − h(B,C,D) ≥ 0.

The Ingleton inequality fails in general for h = H but it has been discovered that certain
special position assumptions make it true even in the entropic setting, e.g.,

▸ If C áD then I(AB∣CD) ≥ 0.
▸ If AáC ∣ D and AáD ∣ C then I(AB∣CD) ≥ 0.

▸ . . .

These are conditional information inequalities and they can tell apart honest boundary
parts of H∗n from fake boundary parts on H∗n .



9 / 11

Ingleton inequality

Let A,B,C,D be subspaces in a finite-dimensional vector space.
Then the Ingleton inequality holds for h = dim:

I(AB∣CD) ∶=h(A,C) + h(B,C) + h(A,D) + h(B,D) + h(C,D) −

h(A,B) − h(C) − h(D) − h(A,C,D) − h(B,C,D) ≥ 0.

The Ingleton inequality fails in general for h = H but it has been discovered that certain
special position assumptions make it true even in the entropic setting, e.g.,

▸ If C áD then I(AB∣CD) ≥ 0.
▸ If AáC ∣ D and AáD ∣ C then I(AB∣CD) ≥ 0.
▸ . . .

These are conditional information inequalities and they can tell apart honest boundary
parts of H∗n from fake boundary parts on H∗n .



9 / 11

Ingleton inequality

Let A,B,C,D be subspaces in a finite-dimensional vector space.
Then the Ingleton inequality holds for h = dim:

I(AB∣CD) ∶=h(A,C) + h(B,C) + h(A,D) + h(B,D) + h(C,D) −

h(A,B) − h(C) − h(D) − h(A,C,D) − h(B,C,D) ≥ 0.

The Ingleton inequality fails in general for h = H but it has been discovered that certain
special position assumptions make it true even in the entropic setting, e.g.,

▸ If C áD then I(AB∣CD) ≥ 0.
▸ If AáC ∣ D and AáD ∣ C then I(AB∣CD) ≥ 0.
▸ . . .

These are conditional information inequalities and they can tell apart honest boundary
parts of H∗n from fake boundary parts on H∗n .



10 / 11

Conditional Ingleton inequalities

Theorem ([KR13] & [Stu21] & [Boe22])

Up to symmetry there are precisely ten minimal sets of conditional independence
assumptions on four random variables which ensure I ≥ 0.

Check out →https://mathrepo.mis.mpg.de/ConditionalIngleton/← for non-linear algebra and
numerical optimization techniques used in part of the proof.

Corollary

On four discrete random variables there are precisely 18 478 realizable conditional
independence structures. (Laws of information theory)

Problem

Extend this classification to functional dependence assumptions.

https://mathrepo.mis.mpg.de/ConditionalIngleton/
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Computing the critical locus of I on ∆(2,2,2,2)

Problem

Find the critical points of the Ingleton functional for four binary random variables.

▸ Computation for a subcase with 8 of the 16 variables using HC.jl [BT18]:

Numerical irreducible decomposition with 383 components

* 12 component(s) of dimension 5.

* 15 component(s) of dimension 3.

* 356 component(s) of dimension 1.

degree table of components:

dimension | degrees of components

-----------+-------------------------------------

5 | (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...)

3 | (1, 1, 1, 1, 1, 1, 2, 1, 1, 1, ...)

1 | (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...)



11 / 11

Computing the critical locus of I on ∆(2,2,2,2)

Problem

Find the critical points of the Ingleton functional for four binary random variables.

▸ Computation for a subcase with 8 of the 16 variables using HC.jl [BT18]:

Numerical irreducible decomposition with 383 components

* 12 component(s) of dimension 5.

* 15 component(s) of dimension 3.

* 356 component(s) of dimension 1.

degree table of components:

dimension | degrees of components

-----------+-------------------------------------

5 | (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...)

3 | (1, 1, 1, 1, 1, 1, 2, 1, 1, 1, ...)

1 | (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...)



References I

Tobias Boege. No eleventh conditional Ingleton inequality. 2022. arXiv:
2204.03971 [cs.IT].

Paul Breiding and Sascha Timme. “HomotopyContinuation.jl: a package for
homotopy continuation in Julia”. In: Mathematical software – ICMS 2018. 6th
international conference, South Bend, IN, USA, July 24–27, 2018.
Proceedings. Cham: Springer, 2018, pp. 458–465. ISBN:
978-3-319-96417-1; 978-3-319-96418-8. DOI:
10.1007/978-3-319-96418-8_54.

Tarik Kaced and Andrei Romashchenko. “Conditional information inequalities
for entropic and almost entropic points”. In: IEEE Trans. Inf. Theory 59.11
(2013), pp. 7149–7167. ISSN: 0018-9448. DOI: 10.1109/TIT.2013.2274614.

Frantisek Matús. “Piecewise linear conditional information inequality”. In:
IEEE Trans. Inf. Theory 52.1 (2006), pp. 236–238. ISSN: 0018-9448. DOI:
10.1109/TIT.2005.860438.

https://arxiv.org/abs/2204.03971
https://doi.org/10.1007/978-3-319-96418-8_54
https://doi.org/10.1109/TIT.2013.2274614
https://doi.org/10.1109/TIT.2005.860438


References II

František Matúš. “Ascending and descending conditional independence
relations”. In: Transactions of the 11th Prague Conference on Information
Theory, Statistical Decision Functions and Random Processes. Vol. B. 1992,
pp. 189–200.

František Matúš. “Two constructions on limits of entropy functions.”. In: IEEE
Trans. Inf. Theory 53.1 (2007), pp. 320–330. ISSN: 0018-9448. DOI:
10.1109/TIT.2006.887090.

František Matúš. Algebraic matroids are almost entropic. Preprint, accepted
to the Proceedings of the AMS. 2017.

Milan Studený. “Conditional independence structures over four discrete
random variables revisited: conditional ingleton inequalities”. In: IEEE Trans.
Inf. Theory 67.11 (2021), pp. 7030–7049. ISSN: 0018-9448. DOI:
10.1109/TIT.2021.3104250.

https://doi.org/10.1109/TIT.2006.887090
https://doi.org/10.1109/TIT.2021.3104250

	Appendix
	References


