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Non-linear algebra

Systems of polynomial equations:

▸ x2 + y2 = 3/2

▸ Ubiquitous in mathematical modeling.
▸ Lots of structure but practically challenging.
▸ Computer algebra allows experimentation.
▸ Atomic formulas in the language of rings.

The first-order theory of algebraically closed fields
has quantifier elimination in the language of rings.

But algebraic statistics, polynomial optimization,
computational geometry, . . . need the real numbers.

x2 + y2 = 3/2

−3/2 ≤ x ≤ 3/2
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The feasibility problem in (R,+, ⋅,<,0,1)

Tarski–Seidenberg Theorem

Real-closed fields have quantifier elimination in the language of ordered rings.

The definable sets in this language are the semialgebraic sets.

The feasibility problem ETR

Given a quantifier-free formula, decide if it is satisfiable in R.
Equivalently: decide if an explicitly given semialgebraic set is inhabited.

x2 + y2 = 0 ∧ x < y ?
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ETR modulo polytime = ∃R

The complexity class ∃R consists of all decision problems which (many-one) reduce
to ETR in polynomial time. Input length is formula length*. Canny (1988): ETR ∈ PSPACE.

Lemma

The special case of ETR for varieties (conjunctions of equations) is ∃R-complete.

Proof.

Given any boolean combination of polynomial constraints f & 0 with & ∈ {=, /=,<,≤,≥,>}:

▸ Use the Tseitin transform to derive a CNF for it.
▸ Replace f /= 0 → yf = 1, f > 0→ y2f = 1 and f ≥ 0→ f = y2.
▸ Dissolve disjunctions ⋁i[fi = 0] into ⋀i[yi = fi] ∧ [∏i yi = 0].
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Incidence geometry

The projective plane over R is the space P2 which extends the affine plane R2 by a
line at infinity. A point p ∈ P2 is given by its homogeneous coordinates p = [x ∶ y ∶ z]:
▸ Not all of x , y , z are zero, and
▸ [x ∶ y ∶ z] = [λx ∶ λy ∶ λz] for λ /= 0.

A triple of homogeneous coordinates [a ∶ b ∶ c] dually also represents a line in P2

with the equation ax + by + cz = 0.

In the projective plane...

Every pair of distinct points p, p′ has a unique line p ∨ p′ which contains them both.
Every pair of distinct lines `, `′ has a unique point ` ∧ `′ which lies on both of them.

Both, ∨ and ∧, are the cross product × in R3 operating on homogeneous coordinates.
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Incidence geometry

Let p = [x ∶ y ∶ z] be a point and ` = [a ∶ b ∶ c] be a line.
Then p lies on ` if and only if 0 = ⟨p, `⟩ = ax + by + cz.

An incidence structure is a combinatorial object consisting of

▸ finitely many (labels for) points P ,
▸ finitely many (labels for) lines L, and
▸ a set I of incidence constraints p ∈ ` or p /∈ ` for some p ∈ P and ` ∈ L.

We assume that there are four points in P no three of which are collinear.
They form a projective basis.

Realizability problem for incidence structures PLR

Given an incidence structure, decide if it can be realized in P2.
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PLR is not straightforward
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A technique for ∃R-completeness

The coordinates of all points in P and of all lines in L are finitely many variables
and we have (short!) polynomial equations (p ∈ `) and inequations (p /∈ `) in them:

PLR ∈ ∃R.

Theorem (von Staudt 1857)

PLR is ∃R-complete.

Recall: It suffices to reduce the variety case of ETR. We will show how to encode one
polynomial equation f = 0 as an incidence structure. In fact, the polynomials z = x + y
and z = x ⋅ y are sufficient.
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Von Staudt constructions

0 x y

0 x y0 x y x + y0 x y

Addition

0 1 x y

0 1 x y0 1 x y x ⋅ y0 1 x y

Multiplication
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Where is Waldo?

1 W

3
√

4

0
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Where is Waldo? On the cube root of 4!

1

W

3
√

40
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∃R-complete problems

▸ PLR is ∃R-complete.

▸ Solving systems consisting only of equations of the form x = 0, x = 1 or
⟨p, `⟩ = ax + by + cz = 0 is ∃R-complete.

▸ Solving systems consisting only of equations of the form x = 0, x = 1 or

⟨p,q × r⟩ = det
⎛
⎜
⎝

px qx rx

py qy ry

pz qz rz

⎞
⎟
⎠
= 0

is ∃R-complete. → matroid theory

▸ Other examples, see Miltzow and Schmiermann (2021).
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Conditional independence [X á Y ∣ Z ]

“When does knowing Z make X irrelevant for Y ?”

Example: Two independent fair coins c1 and c2 are wired to a bell b which rings
if and only if c1 = c2.

▸ c1 á c2

▸ ¬(c1 á c2 ∣ b) . . .

Question: When can we conclude from some independences other independences?
E.g., is it possible that c1 á b?
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Gaussian conditional independence

Assume ξ = (ξi ∶ i ∈ N) are jointly Gaussian with covariance matrix Σ ∈ PDN .

Definition

The polynomial Σ[K ] ∶= det ΣK ,K is a principal minor of Σ and Σ[ij ∣K ] ∶= det ΣiK ,jK

is an almost-principal minor.

Algebraic statistics proves:

▸ Σ is PD if and only if Σ[K ] > 0 for all K ⊆ N.

▸ [ξi á ξj ∣ ξK ] holds if and only if Σ[ij ∣K ] = 0.

▸ E[ξ] = µ is irrelevant.
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Very special polynomials

Σ[ij ∣ ] = xij

Σ[ij ∣ k] = xijxkk − xik xjk

Σ[ij ∣ kl] = xijxkk xll − xilxjlxkk + xilxjk xkl + xik xjlxkl − xijx2
kl − xik xjk xll

Σ[ij ∣ klm] = xijxkk xllxmm + ximxjmx2
kl − ximxjlxklxkm − xilxjmxklxkm +

xilxjlx2
km − ximxjmxkk xll + ximxjk xkmxll + xik xjmxkmxll −

xijx2
kmxll + ximxjlxkk xlm + xilxjmxkk xlm − ximxjk xklxlm −

xik xjmxklxlm − xilxjk xkmxlm − xik xjlxkmxlm + 2xijxklxkmxlm +
xik xjk x2

lm − xijxkk x2
lm − xilxjlxkk xmm + xilxjk xklxmm +

xik xjlxklxmm − xijx2
klxmm − xik xjk xllxmm

⋮
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Gaussian CI models

Definition

A CI constraint is a CI statement [ξi á ξj ∣ ξK ] or its negation ¬[ξi á ξj ∣ ξK ].
The model of a set of CI constraints is the set of all PD matrices which satisfy them.

Figure: Model of Σ[12 ∣3] = a − bc = 0 in the space of 3 × 3 correlation matrices.
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Models and inference

Inference problem for Gaussian conditional independence GCI

Given a clause ⋀P ⇒ ⋁Q, where P and Q are sets of CI statements over N,
decide if it is valid for all N-variate Gaussians.

⋀P ⇒ ⋁Q

is not valid
⇐⇒

M(P ∪ ¬Q)

has a point
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Example of CI inference

Σ =
⎛
⎜
⎝

1 a b
a 1 c
b c 1

⎞
⎟
⎠

▸ If Σ[12 ∣ ] = a and Σ[12 ∣3] = a − bc vanish,
then bc = Σ[13 ∣ ] ⋅Σ[23 ∣ ] must vanish:

[12 ∣ ] ∧ [12 ∣3] ⇒ [13 ∣ ] ∨ [23 ∣ ].
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Completeness result for GCI

The GCI problem is as hard as it could possibly be:

Theorem

GCI is ∀R-complete where ∀R abbreviates co-∃R.

Proof.

Both parts require care!

▸ To show containment in ∀R, we have to show that an n × n determinant of a
symmetric matrix can be computed by a polynomially-sized polynomial system.

▸ The hardness proof is more interesting! We express ⟨p, `⟩ using Σ[ij ∣K ].
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Condensed almost-principal minor

Suppose xxx = xyy = xzz = 1 (in a correlation matrix) and xxy = xxz = xyz = 0:

Σ[ij ∣ ] = xij

Σ[ij ∣ xyz] = xijxxxxyy xzz + xizxjzx2
xy − xizxjy xxy xxz − xiy xjzxxy xxz + xiy xjy x2

xz

− xizxjzxxxxyy + xizxjxxxzxyy + xixxjzxxzxyy − xijx2
xzxyy

+ xizxjy xxxxyz + xiy xjzxxxxyz − xizxjxxxy xyz − xixxjzxxy xyz

− xiy xjxxxzxyz − xixxjy xxzxyz + 2xijxxy xxzxyz + xixxjxx2
yz

− xijxxxx2
yz − xiy xjy xxxxzz + xiy xjxxxy xzz + xixxjy xxy xzz

− xijx2
xy xzz − xixxjxxyy xzz

= xij − ∑
k=x ,y ,z

xik xjk = xij − ⟨p, `⟩.
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Incidence geometry as conditional independence

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

p1 ⋯ pn l1 ⋯ lm x y z

p1 p∗1 ⟨p,p′⟩ px
1 py

1 pz
1

⋮ ⋱ ⟨p, `⟩ ⋮
pn ⟨p′,p⟩ p∗n px

n py
n pz

n
l1 `∗1 ⟨`, `′⟩ `x

1 `y
1 `z

1
⋮ ⟨`,p⟩ ⋱ ⋮

lm ⟨`′, `⟩ `∗m `x
m `y

m `z
m

x px
1 px

n `x
1 `x

m 1 0 0
y py

1 ⋯ py
n `y

1 ⋯ `y
m 0 1 0

z pz
1 pz

n `z
1 `z

m 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Universality theorems

Integer
polynomials

Incidence
geometry

Conditional
independence

Universality

More than computational complexity travels along those arcs!
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Certification of consistency

Petr Šimeček. “Gaussian representation of independence models over four random variables”.
In: COMPSTAT conference. 2006
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Consistency certification is hard

Šimeček’s Question (2006)

Does every non-empty Gaussian CI model contain a rational point?

Or: can every wrong inference rule be refuted over Q?
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Consistency certification is hard

Šimeček’s Question (2006)

Does every non-empty Gaussian CI model contain a rational point?

Or: can every wrong inference rule be refuted over Q?

⎛
⎜⎜⎜
⎝

1 −1/17 −49/51 −7/17
−1/17 1 1/3 1/7
−49/51 1/3 1 3/7
−7/17 1/7 3/7 1

⎞
⎟⎟⎟
⎠
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Consistency certification is hard

Šimeček’s Question (2006)

Does every non-empty Gaussian CI model contain a rational point?

Or: can every wrong inference rule be refuted over Q?

Theorem

For every finite real extension K of Q there exists a CI modelM such that
M∩ PDN(K) /= ∅ butM∩ PDN(L) = ∅ for all proper subfields L ⊊ K.
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Petr Šimeček. “Gaussian representation of independence models over four
random variables”. In: COMPSTAT conference. 2006.

https://doi.org/10.48550/ARXIV.2106.02397
https://arxiv.org/abs/2106.02397

	Appendix
	References


