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The first-order theory of algebraically closed fields
has quantifier elimination in the language of rings. l l l l l

But algebraic statistics, polynomial optimization,

computational geometry, . .. need the real numbers. =32 < x <32
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Tarski—Seidenberg Theorem

Real-closed fields have quantifier elimination in the language of ordered rings.

The definable sets in this language are the semialgebraic sets.

The feasibility problem ETR

Given a quantifier-free formula, decide if it is satisfiable in R.
Equivalently: decide if an explicitly given semialgebraic set is inhabited.

X2+y2=0Ax<y?
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ETR modulo polytime = 3R

The complexity class 3R consists of all decision problems which (many-one) reduce
to ETR in polynomial time. Input length is formula length*. Canny (1988): ETR € PSPACE.

Lemma

The special case of ETR for varieties (conjunctions of equations) is IR-complete.

Proof.

Given any boolean combination of polynomial constraints f x 0 with x € {=,#,<, <, >, >}:
» Use the Tseitin transform to derive a CNF for it.
» Replace f£0 — yf=1, f>0 - y?f=1and >0 - f = y?.
» Dissolve disjunctions V;[fi = 0] into A;[yi = fi] A [T1; i = 0]. O
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Incidence geometry

The projective plane over R is the space P? which extends the affine plane R? by a
line at infinity. A point p € IP? is given by its homogeneous coordinates p = [x: y : z]:
» Not all of x, y, z are zero, and
» [x:y:z]=[Xx:Ay:Az] for X #0.

A triple of homogeneous coordinates [a: b: ¢] dually also represents a line in P2
with the equation ax + by + ¢z = 0.

In the projective plane...

Every pair of distinct points p, p’ has a unique line p v p’ which contains them both.
Every pair of distinct lines ¢, ¢' has a unique point ¢ A ¢' which lies on both of them.

Both, v and A, are the cross product x in R® operating on homogeneous coordinates.
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Letp=[x:y:z] beapointand ¢ =[a:b:c] be aline.
Then plies on ¢ if and only if 0 = (p, ¢) = ax + by + cz.

An incidence structure is a combinatorial object consisting of

» finitely many (labels for) points P,
» finitely many (labels for) lines £, and
» a set Z of incidence constraints pe £ or p ¢ £ forsome pe P and £ € L.

We assume that there are four points in P no three of which are collinear.
They form a projective basis.

Realizability problem for incidence structures PLR

Given an incidence structure, decide if it can be realized in P2.
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A technique for 3R-completeness

The coordinates of all points in P and of all lines in £ are finitely many variables
and we have (short!) polynomial equations (p € ¢) and inequations (p ¢ ¢) in them:

PLR € JR.

Theorem (von Staudt 1857)

PLR is AR -complete.

Recall: It suffices to reduce the variety case of ETR. We will show how to encode one
polynomial equation f = 0 as an incidence structure. In fact, the polynomials z = x + y
and z = x - y are sufficient.



Von Staudt constructions

0 Xy 0 1 x y

Addition Multiplication



Von Staudt constructions

|
1

Addition Multiplication

y 0 1 x y



Von Staudt constructions

I
0 Xy 0 1 x y

Addition Multiplication



Von Staudt constructions

N

[
O Xy X+y O 1Xy

~ I

Addition Multiplication



Von Staudt constructions

| N

|
0 X X+ 0 1 x y
] Iy y \\

~ I

Addition Multiplication



Von Staudt constructions

N

[ I
0 X y X+y O 1 X }\
] 1 ~ ] AN

Addition Multiplication



Von Staudt constructions

N

I
0 Xy X+y

~ ]

AN N

Addition Multiplication



Where is Waldo?

\\\ <

e

/
/

s‘}\




Where is Waldo? On the cube root of 4!
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JR-complete problems

v

PLR is dR-complete.

v

Solving systems consisting only of equations of the form x =0, x =1 or
(p,?) = ax + by + cz = 0 is 3IR-complete.

v

Solving systems consisting only of equations of the form x =0, x =1 or

Px Gx Ix
(p,gxr)=detlp, q, r,|=0
Pz qz I

is JR-complete. — matroid theory

v

Other examples, see Miltzow and Schmiermann (2021).
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Conditional independence [X 1L Y | Z]

“When does knowing Z make X irrelevant for Y?”

Example: Two independent fair coins ¢; and ¢, are wired to a bell b which rings
if and only if ¢y = c».

> Ci Ul Co

> —|(C1 J_I_Cglb)

Question: When can we conclude from some independences other independences?
E.g., is it possible that ¢y 1 b?



Gaussian conditional independence

Assume & = (& : i € N) are jointly Gaussian with covariance matrix X € PDy.

Definition

The polynomial X[K] := det Xk k is a principal minor of ¥ and X [jj| K] = det Xjx jx
is an almost-principal minor.

Algebraic statistics proves:
» X is PDifand only if X[K] > 0 for all K < N.

» [& L& | &k] holds if and only if X[jj| K] = 0.

» E[£] = pisirrelevant.



Very special polynomials

£[jj
=[] k

Xij

XijXkk — Xik Xjk

m 2
Y[if| Kl = XiXkweXit — XXt Xk + XitXjk Xkt + Xik Xjt Xkt = Xij X — Xik Xik X1

S [ij| kim

]
1=
]
1=

XjjXkk X1 Xmm + leX/ka/ XimXj1 Xk1 Xkm — XitXjmXki Xkm +
XiIXjIX/%m = XimXimXkk Xil + XimXjk XkmX11 + Xik XimXkm X —
XinEmX// + XimXji Xkk Xim + Xit XimXkk Xim — XimXjk Xk1 Xim —
Xik XjmXk1Xim — Xt Xjk XkmXim — Xik Xji XkmXim + 2Xjj Xxi XkmXim +
XikakX/%n - Xinka/fn = Xi Xji Xkk Xmm + XiiXjk Xki Xmm +

2
Xik Xji XkiXmm — Xij XigXmm — Xik Xjk Xi1 Xmm



Gaussian Cl models

Definition
A Cl constraintis a Cl statement [&; 1L §; | £k ] or its negation —[&; 1L &; | k.
The model of a set of Cl constraints is the set of all PD matrices which satisfy them.

Figure: Model of £[12]3] = a- bc = 0 in the space of 3 x 3 correlation matrices.
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Models and inference

Inference problem for Gaussian conditional independence GCI

Given a clause AP = \ Q, where P and Q are sets of Cl statements over N,
decide if it is valid for all N-variate Gaussians.

AP =VQ — M(Pu-Q)
is not valid has a point



Example of Cl inference

o = Q
- O T
SN——

oo -

» If X[12]] =aand X[12]3] = a- bc vanish,
then bc = X[13]]- X[23|] must vanish:

[12|]A[12]83] = [13]]Vv[23]].
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Completeness result for GCI

The GCI problem is as hard as it could possibly be:

Theorem

GCI is VIR-complete where YR abbreviates co-IR.

Proof.
Both parts require care!

» To show containment in VIR, we have to show that an n x n determinant of a
symmetric matrix can be computed by a polynomially-sized polynomial system.

» The hardness proof is more interesting! We express (p, ¢) using X[ij| K].



Condensed almost-principal minor

Suppose Xxx = X,y = Xzz = 1 (in a correlation matrix) and Xy, = Xxz = X, = 0:
i) =x;
. 2 2
Z[Ij | XyZ] = XijXoox Xyy Xzz + X/'szz& = Xiz Xjy Xxy Xxz — Xiy Xjz Xxy Xxz + Xiy Xjy X
2
= XizXjz Xxx Xyy + Xiz Xix Xxz Xyy + XixXjz Xxz Xyy = XijXyzXyy
+ Xiz Xjy Xxx Xyz + Xiy Xjz Xxx Xyz = Xiz Xjx Xxy Xyz = Xix Xjz Xxy Xyz

2
= Xiy XixXxzXyz — XixXjy XxzXyz + 2X/'jxxyxxzxyz + X/'ijnyz

2
- X/jXXXXyz = Xiy Xjy Xxox Xzz + X/'ijx&Xzz + Xixxjyﬂxzz
2
- X//XXyXZZ - XiijXnyXZZ

=Xj— . XXk = Xj—(p,L).
k=X7y7z



Incidence geometry as conditional independence

P+ Pn l4 m X y z
Py (p,p’) Py Py opf
(p. £) :
(', p) Jo Py Py PR
13 ey [ & &
(¢, p) :
(e, 0) oA . S A &
Py Py & lm 1.0 0
p! o’ o g o 1 o0
pi [ord 5 th 0 0




Universality theorems

Integer Incidence Conditional
polynomials geometry independence

’
.,
’
-,
-
-
-
-

[ Universality ]< ________________ -

More than computational complexity travels along those arcs!
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Certification of consistency

COMPSTAT conference. 2006

Petr Simecek. “Gaussian representation of independence models over four random variables”.

In
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Consistency certification is hard

Simeé&ek’s Question (2006)

Does every non-empty Gaussian Cl model contain a rational point?

Or: can every wrong inference rule be refuted over Q?

Theorem

For every finite real extension K of QQ there exists a Cl model M such that
MnPDn(K) # @ but M nPDN(L) = @ for all proper subfields L ¢ K.
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