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Graphical models → TC5



2 / 12

Gaussian conditional independence

Assume ξ = (ξi ∶ i ∈ N) are jointly Gaussian with covariance matrix Σ ∈ PDN.

Definition
The polynomial Σ[K] ∶= detΣK,K is a principal minor of Σ and Σ[ij ∣K] ∶= detΣiK,jK
is an almost-principal minor.

▸ Σ is PD if and only if Σ[K] > 0 for all K ⊆ N.

▸ [ξi á ξj ∣ ξK] holds if and only if Σ[ij ∣K] = 0.
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Gaussian CI models

Definition
A CI constraint is a CI statement [ξi á ξj ∣ ξK] or its negation ¬[ξi á ξj ∣ ξK].
The model of a set of CI constraints is the set of all PD matrices which satisfy them.

Figure: Model of Σ[12 ∣3] = a − bc = 0 in the space of 3 × 3 correlation matrices.
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Basic questions

▸ How hard is it to decide if the model specification is inconsistent?

▸ How hard is it to certify consistency by showing a point in the model?

▸ What is the geometric structure of the models?

What is the model of [XáY ] ∧ [Xá Z ∣ Y ] ∧ ¬[XáY ∣ Z ] ?
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Models and inference

Consider two sets of CI statements P and Q:

⋀P ⇒ ⋁Q

is not valid
⇐⇒

P ∪ ¬Q
has a point

Reasoning about CI statements in normally distributed random variables is
the same as reasoning about the vanishing of very special kinds of determinants
on very special kinds of varieties inside the positive definite matrices.
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For ancient geometers: conditional independence ≈ collinearity
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Normal form for proofs and refutations

Let fi ∈ Z[t1, . . . , tk] be integer polynomials in finitely many variables.

Theorem (Tarski’s transfer principle)
If a polynomial system {fi &i 0}, where &i ∈ {=, /=,<,≤,≥,>}, has a solution over R,
then it has a solution in a finite real extension of Q.

→ If ⋀P ⇒ ⋁Q is false, there exists a counterexample matrix Σ with algebraic entries.

[12 ∣ ] ∧ [12 ∣3]⇒ [13 ∣ ] is false and a counterexample is

⎛
⎜
⎝

1 0 1/2
0 1 0

1/2 0 1

⎞
⎟
⎠
.
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Normal form for proofs and refutations

Let fi,gj,hk ∈ Z[t1, . . . , tk] be integer polynomials in finitely many variables.

Theorem (Positivstellensatz)
A polynomial system {fi = 0,gj ≥ 0,hk /= 0} is infeasible if and only if there exist
f ∈ ideal(fi), g ∈ cone(gj) and h ∈ monoid(hk) such that g + h2 = f.

→ If ⋀P ⇒ ⋁Q is true, there exists an algebraic proof for it with integer coefficients.

[12 ∣ ] ∧ [12 ∣3]⇒ [13 ∣ ] ∨ [23 ∣ ] is true and a proof is the final polynomial

Σ[13 ∣ ] ⋅Σ[23 ∣ ] = Σ[3] ⋅Σ[12 ∣ ] −Σ[12 ∣3].
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A 5 × 5 final polynomial

The following inference rule is valid for all positive definite 5 × 5 matrices:

[12 ∣ ]∧[14 ∣5]∧[23 ∣5]∧[35 ∣1]∧[45 ∣2]∧[15 ∣23]∧[34 ∣12]∧[24 ∣135] ⇒ [25 ∣ ]∨[34 ∣ ].

[25 ∣ ][34 ∣ ] ⋅ [1][2][3][15] =
(cd2egr + bd2fgr − ad2grh − 2cd2e2i − 2bd2efi − 2pdfgri + 2ad2ehi + 2pdefi2 − 2pdqhi2 + 2pcqi3 +

2pdqrij − 2pbqi2j − pcegrt + pbfgrt + pagrht + 2pce2it − 2pcqrit + 2pbqhit − 2paehit) ⋅ [12 ∣ ] +
(pdqer + pbqgr − 2pbqei) ⋅ [14 ∣5] − (pcdqr + p2fgr − 2pbcqi + 2pb2qj − 2p2qrj) ⋅ [23 ∣5] +

(cdqgr − 2cdqei + 2pqghi − 2pqfi2 − pqgrj + 2pqeij − 2pe2ft + 2pqfrt) ⋅ [35 ∣1] +
(pd2er − 2pbdei + p2gri + 2pb2et − 2p2ert) ⋅ [45 ∣2] − (2pdfi − 2pbft) ⋅ [15 ∣23] −

(d2gr − 2d2ei − pgrt + 2peit) ⋅ [34 ∣12] − 2pqi ⋅ [24 ∣135].
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A 5 × 5 final polynomial

R = QQ[p,a,b,c,d, q,e,f,g, r,h,i, s,j, t];
X = genericSymmetricMatrix(R,p,5);
I = ideal(

det X_{0}^{1}, det X_{0,3}^{2,3}, det X_{0,4}^{3,4},
det X_{1,4}^{2,4}, det X_{2,0}^{4,0}, det X_{3,1}^{4,1},
det X_{0,1,2}^{4,1,2}, det X_{2,0,1}^{3,0,1},
det X_{1,0,2,4}^{3,0,2,4}

);
U = g*h*p*q*r*(p*t-d^2); -- [25 ∣ ][34 ∣ ] ⋅ [1][2][3][15] ∈ monoid(V)
U % I --> 0, meaning monoid(V) ∩ ideal(V) /= ∅ in Q[X]
-- Get a proof that U is in I:
G = gens I; -- the equations generating ideal(V)
H = U // G; -- linear combinators for U from G
U == G*H --> true
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Consistency checking is hard

The complexity class ∃R contains all decision problems which can be reduced in
polynomial time to the feasibility of a semialgebraic set:
▸ polynomial optimization
▸ computational geometry
▸ algebraic statistics …

Theorem
The problem of deciding whether a general CI model is non-empty is complete for ∃R.

(Graphical models are always consistent.)
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Consistency certification is hard

Šimeček’s Question
Does every non-empty Gaussian CI model contain a rational point?

Theorem
For every finite real extension K of Q there exists a CI model M such that
M ∩ PDN(K) /= ∅ but M ∩ PDN(L) = ∅ for all proper subfields L ⊊ K.

(Graphical models always have rational points.)
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Model topology can be bad

An oriented CI model is specified by sign constraints on partial correlations.

Theorem
For every primary basic semialgebraic set Z there exists an oriented CI model M
which is homotopy-equivalent to Z.

(Graphical models are always contractible.)


