Marginal independence models

Tobias Boege¹ Sonja Petrović² Bernd Sturmfels^{1,3}

¹MPI-MiS

²Illinois Tech ³UC Berkeley

47th International Symposium on Symbolic and Algebraic Computation, Lille, 7 July 2022

The mantra of algebraic statistics

Statistical models are semialgebraic sets*

The set of all distributions of two *independent* binary random variables (X, Y) is a surface in the probability simplex defined by

$$P(X = 0, Y = 0) \cdot P(X = 1, Y = 1) =$$

 $P(X = 0, Y = 1) \cdot P(X = 1, Y = 0).$

*sometimes 1/:

The mantra of algebraic statistics

Statistical models are semialgebraic sets*

The set of all distributions of two *independent* binary random variables (X,Y) is a surface in the probability simplex defined by

$$p_{00} \cdot p_{11} = p_{01} \cdot p_{10}$$
.

Also known as the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^1$.

*sometimes 1 /

Setup

- ▶ Consider discrete random variables X_j with state space $[d_j] = \{1, ..., d_j\}$.
- ▶ A probability distribution P is identified with the $d_1 \times \cdots \times d_n$ tensor of probabilities $p_{i_1...i_n} := P(X_1 = i_1, ..., X_n = i_n)$.
- ► The probability simplex is the set of all discrete distributions

$$\Delta = \Delta(d_1, d_2, \dots, d_n) = \{P \in \mathbb{R}^{d_1 \times \dots \times d_n} : P \ge 0 \text{ and } \sum P = 1\}.$$

Setup

- ▶ Consider discrete random variables X_j with state space $[d_j] = \{1, ..., d_j\}$.
- ▶ A probability distribution P is identified with the $d_1 \times \cdots \times d_n$ tensor of probabilities $p_{i_1...i_n} := P(X_1 = i_1, ..., X_n = i_n)$.
- ► The probability simplex is the set of all discrete distributions

$$\Delta = \Delta(d_1, d_2, \dots, d_n) = \{P \in \mathbb{R}^{d_1 \times \dots \times d_n} : P \ge 0 \text{ and } \sum P = 1\}.$$

A statistical model is a subset of Δ . E.g., the binary independence model is the set of all 2×2 matrices $P = \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix}$ in $\Delta(2,2)$ such that $\det P = 0$.

The binary random variables $(X_e)_{e \in E(G)}$ pick a random subgraph such that appearances of edges which do not contain a cycle are completely independent.

This describes a statistical model in $\Delta(2,2,\ldots,2)$. A point in the model is a probability distribution whose outcomes are graphs on four vertices.

Marginal independence models: Definition

In this talk, a *simplicial complex* is a collection Σ of subsets of [n] such that:

- ▶ $\{i\} \in \Sigma$ for all $i \in [n]$,
- $\bullet \ \tau \subseteq \sigma \in \Sigma \Rightarrow \tau \in \Sigma.$

Marginal independence models: Definition

In this talk, a *simplicial complex* is a collection Σ of subsets of [n] such that:

- ▶ $\{i\} \in \Sigma$ for all $i \in [n]$,
- $\quad \bullet \quad \tau \subseteq \sigma \in \Sigma \Rightarrow \tau \in \Sigma.$

Definition

The marginal independence model \mathcal{M}_{Σ} is the set of distributions of (X_1, \ldots, X_n) in $\Delta(d_1, \ldots, d_n)$ such that X_{σ} is completely independent for all $\sigma \in \Sigma$.

▶ The random subgraph model is a marginal independence model where Σ is the simplicial complex of all forests in the graph.

Marginal independence models: Algebra

A subvector X_{σ} , $\sigma \subseteq [n]$, is *completely independent* if for all choices $i_j \in [d_j]$:

$$P(X_j = i_j : j \in \sigma) = \prod_{j \in \sigma} P(X_j = i_j).$$

That is, the marginal distribution P_{σ} of X_{σ} is a tensor of rank 1.

Marginal independence models: Algebra

A subvector X_{σ} , $\sigma \subseteq [n]$, is *completely independent* if for all choices $i_j \in [d_j]$:

$$P(X_j = i_j : j \in \sigma) = \prod_{j \in \sigma} P(X_j = i_j).$$

That is, the marginal distribution P_{σ} of X_{σ} is a tensor of rank 1.

Implicitization of the above parametrization gives the equations of the Segre variety $\mathcal{S} = \times_{j \in \sigma} \mathbb{P}^{d_j-1}$ in $\mathbb{P}^{\prod_{j \in \sigma} d_j - 1}$.

Kirkup's parametrization

Lemma (Kirkup (2007))

The marginal independence model equals $\mathcal{M}_{\Sigma} = \mathcal{S} + \mathcal{L}_{\Sigma}$ where \mathcal{L}_{Σ} is the linear subspace with marginals $P_{\sigma} = 0$ for all $\sigma \in \Sigma$.

Möbius coordinates

The defining ideal of \mathcal{M}_{Σ} is generated by homogeneous, quadratic polynomials coming from the Segre equations for each $\sigma \in \Sigma$, e.g., for $\Sigma = [12, 13, 23]$,

$$p_{000}p_{110} + p_{001}p_{110} + p_{000}p_{111} + p_{001}p_{111} = p_{010}p_{100} + p_{011}p_{100} + p_{010}p_{101} + p_{011}p_{101}$$
(1 \perp 2)

$$p_{000}p_{101} + p_{010}p_{101} + p_{000}p_{111} + p_{010}p_{111} = p_{001}p_{100} + p_{011}p_{100} + p_{001}p_{110} + p_{011}p_{110}$$
(1 \perp 3)

$$p_{000}p_{011}+p_{011}p_{100}+p_{000}p_{111}+p_{100}p_{111}=p_{001}p_{010}+p_{010}p_{101}+p_{001}p_{110}+p_{101}p_{110} \qquad (2 \perp 13)$$

Möbius coordinates

The defining ideal of \mathcal{M}_{Σ} is generated by homogeneous, quadratic polynomials coming from the Segre equations for each $\sigma \in \Sigma$, e.g., for $\Sigma = [12, 13, 23]$,

$$q_{\varnothing}q_{12}=q_1q_2 \tag{1 ld 2}$$

$$q_{\varnothing}q_{13}=q_1q_3 \tag{1 11 3}$$

$$q_{\varnothing}q_{23}=q_2q_3 \qquad (2 \perp \!\!\! \perp 3)$$

In the Möbius coordinates q_{\bullet} , the ideal becomes toric.

Toric representation theorem

Theorem

The variety of the marginal independence model \mathcal{M}_{Σ} is irreducible and its prime ideal is toric in Möbius coordinates. That is, it has a parametrization by monomials and its ideal is generated by binomials. The parametrization is

$$q_{i_1...i_n} \mapsto \prod_{j:i_j \neq +} \theta_{i_j}^{(j)} \quad \text{for} \quad \{j:i_j \neq +\} \in \Sigma.$$

Moreover, the statistical model \mathcal{M}_{Σ} is a contractible semialgebraic set of dimension

$$\sum_{j=1}^n (d_j-1) + \sum_{\tau \notin \Sigma} \prod_{j \in \tau} (d_j-1).$$

Marginal independence models: Properties

- ▶ Nice parametrization as Segre + linear space.
- Nice binomial equations in Möbius coordinates (but degrees can be high).
- Contractible statistical models.
- ▶ Stratify the probability simplex.
- ► Contain our random graph models and more!

Parameter estimation

Given a statistical model \mathcal{M} and a sample distribution $U \in \Delta$, we seek the point in \mathcal{M} which best "explains" the observations in U.

Parameter estimation

Given a statistical model \mathcal{M} and a sample distribution $U \in \Delta$, we seek the point in \mathcal{M} which best "explains" the observations in U.

- ▶ Maximum likelihood: $\max \sum u_{\bullet} \log p_{\bullet}$ s.t. $P \in \mathcal{M}$.
- ▶ Euclidean distance: min $\sum ||u_{\bullet} p_{\bullet}||^2$ s.t. $P \in \mathcal{M}$.

Parameter estimation

Given a statistical model \mathcal{M} and a sample distribution $U \in \Delta$, we seek the point in \mathcal{M} which best "explains" the observations in U.

- ▶ Maximum likelihood: $\max \sum u_{\bullet} \log p_{\bullet}$ s.t. $P \in \mathcal{M}$.
- ▶ Euclidean distance: min $\sum ||u_{\bullet} p_{\bullet}||^2$ s.t. $P \in \mathcal{M}$.

For
$$\mathcal{M} = \mathcal{S}(2,2,2)$$
, i.e., $\Sigma = [123]$, and $U = (2^{-1}, 2^{-2}, 2^{-3}, 2^{-4}, 2^{-5}, 2^{-6}, 2^{-7}, \underline{2^{-7}})$:

Computed using HomotopyContinuation.jl.

Database of small models

https://mathrepo.mis.mpg.de/MarginalIndependence

dimension	degree	mingens	f-vector	simplicial complex Σ	ED	ML
15	1	()	$(1,4)_5$	[1, 2, 3, 4]	1	1
14	2	(1)	$(1,4,1)_6$	[3, 4, 12]	5	1
13	3	(3)	$(1,4,2)_7$	[4, 12, 13]	5	9
13	4	(2)	$(1,4,2)_7$	[14, 23]	25	1041
12	4	(6)	$(1,4,3)_8$	[12, 13, 14]	5	209
12	5	(5)	$(1,4,3)_8$	[12, 14, 23]	21	1081
12	5	(5)	$(1,4,3)_8$	[4, 12, 13, 23]	21	17
			•••			
8	16	(21)	$(1,4,6,1)_{12}$	[14, 24, 34, 123]	117	8542
7	18	(28)	$(1,4,6,2)_{13}$	[34, 123, 124]	89	2121
6	20	(36)	$(1,4,6,3)_{14}$	[123, 124, 134]	89	505
5	23	(44)	$(1,4,6,4)_{15}$	[123, 124, 134, 234]	169	561
4	24	(55)	$(1,4,6,4,1)_{16}$	[1234]	73	1

References

- Tobias Boege, Sonja Petrović, and Bernd Sturmfels. "Marginal Independence Models". In: Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation. ISSAC '22. Villeneuve-d'Ascq, France: Association for Computing Machinery (ACM), 2022, pp. 263–271. DOI: 10.1145/3476446.3536193.
- Mathias Drton and Thomas S. Richardson. "Binary models for marginal independence". In: J. R. Stat. Soc., Ser. B, Stat. Methodol. 70.2 (2008), pp. 287–309. DOI: 10.1111/j.1467-9868.2007.00636.x.
- George A. Kirkup. "Random variables with completely independent subcollections". In: *J. Algebra* 309.2 (2007), pp. 427–454. DOI: 10.1016/j.jalgebra.2006.06.023.
- Seth Sullivant. *Algebraic Statistics*. Vol. 194. Graduate Studies in Mathematics. American Mathematical Society, 2018.