Marginal independence models

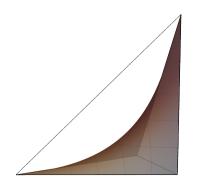
 $\underline{\text{Tobias Boege}^1}$ Sonja Petrović² Bernd Sturmfels^{1,3}

 1 MPI-MiS 2 Illinois Tech 3 UC Berkeley

Applied Algebra and Analysis Online Seminar, TU Braunschweig, 5 May 2022

The mantra of algebraic statistics

Statistical models are semialgebraic sets¹



The set of all distributions of two *independent* binary random variables (X, Y) is a surface in the probability simplex defined by

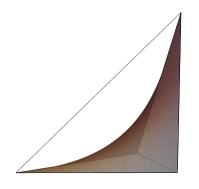
$$P(X = 0, Y = 0) \cdot P(X = 1, Y = 1) =$$

 $P(X = 0, Y = 1) \cdot P(X = 1, Y = 0).$

¹sometimes

The mantra of algebraic statistics

Statistical models are semialgebraic sets¹



The set of all distributions of two *independent* binary random variables (X, Y) is a surface in the probability simplex defined by

$$p_{00} \cdot p_{11} = p_{01} \cdot p_{10}$$
.

Also known as the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^1$.

¹sometimes

Setup

- ▶ Consider discrete random variables X_j with state space $[d_j] = \{1, \ldots, d_j\}$.
- ▶ A probability distribution P is identified with the $d_1 \times \cdots \times d_n$ tensor of atomic probabilities $p_{i_1...i_n} := P(X_1 = i_1, ..., X_n = i_n)$.
- ► The probability simplex is the set of all discrete distributions

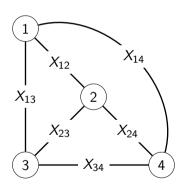
$$\Delta = \Delta(d_1, d_2, \dots, d_n) = \{ P \in \mathbb{R}^{d_1 \times \dots \times d_n} : P \ge 0 \text{ and } \sum P = 1 \}.$$

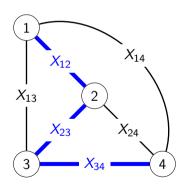
Setup

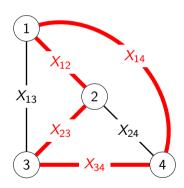
- ▶ Consider discrete random variables X_i with state space $[d_i] = \{1, ..., d_i\}$.
- ▶ A probability distribution P is identified with the $d_1 \times \cdots \times d_n$ tensor of atomic probabilities $p_{i_1...i_n} := P(X_1 = i_1, ..., X_n = i_n)$.
- ► The probability simplex is the set of all discrete distributions

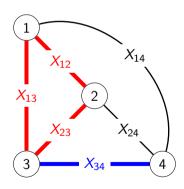
$$\Delta = \Delta(d_1, d_2, \dots, d_n) = \{ P \in \mathbb{R}^{d_1 \times \dots \times d_n} : P \ge 0 \text{ and } \sum P = 1 \}.$$

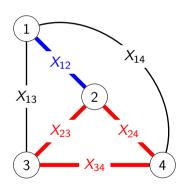
A statistical model is a subset of Δ . E.g., the binary independence model is the set of all 2×2 matrices $P = \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix}$ in $\Delta(2,2)$ such that $\det P = 0$.





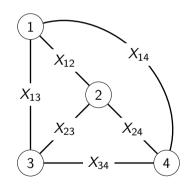






The binary random variables $(X_e)_{e \in E(G)}$ pick a random subgraph such that appearances of edges which do not contain a cycle are completely independent.

This describes a statistical model in $\Delta(2,2,\ldots,2)$. A point in the model is a probability distribution whose outcomes are graphs on four vertices.



Marginal independence models: Definition

In this talk, a *simplicial complex* is a collection Σ of subsets of [n] such that:

- ▶ $\{i\} \in \Sigma$ for all $i \in [n]$,
- $\bullet \ \tau \subseteq \sigma \in \Sigma \Rightarrow \tau \in \Sigma.$

Marginal independence models: Definition

In this talk, a *simplicial complex* is a collection Σ of subsets of [n] such that:

- ▶ $\{i\} \in \Sigma$ for all $i \in [n]$,
- $\bullet \ \tau \subseteq \sigma \in \Sigma \Rightarrow \tau \in \Sigma.$

Definition

The marginal independence model \mathcal{M}_{Σ} is the set of distributions of (X_1, \ldots, X_n) in $\Delta(d_1, \ldots, d_n)$ such that X_{σ} is completely independent for all $\sigma \in \Sigma$.

▶ The random subgraph model is a marginal independence model where Σ is the simplicial complex of all forests in the graph.

Marginal independence models: Algebra

A subvector X_{σ} , $\sigma \subseteq [n]$, is *completely independent* if for all choices $i_j \in [d_j]$:

$$P(X_j = i_j : j \in \sigma) = \prod_{j \in \sigma} P(X_j = i_j).$$

That is, the marginal distribution P_{σ} of X_{σ} is a tensor of rank 1.

Marginal independence models: Algebra

A subvector X_{σ} , $\sigma \subseteq [n]$, is *completely independent* if for all choices $i_j \in [d_j]$:

$$P(X_j = i_j : j \in \sigma) = \prod_{j \in \sigma} P(X_j = i_j).$$

That is, the marginal distribution P_{σ} of X_{σ} is a tensor of rank 1.

Implicitization of the above parametrization gives the equations of the Segre variety $\times_{j\in\sigma} \mathbb{P}^{d_j-1}$ in $\mathbb{P}^{\prod_{j\in\sigma} d_j-1}$.

Not to be confused with: Hierarchical models

Hierarchical models are also derived from simplicial complexes but their parametrization is:

$$P(X_j = i_j : j \in [n]) = \prod_{\sigma \text{ facet of } \Sigma} \theta_{i_\sigma}^{(\sigma)}.$$

- ▶ Parametrization is for the entire tensor instead of marginals.
- ► One set of parameters per facet instead of faces factorizing.

Example:
$$\Sigma = [12, 13, 23]$$

▶ The hierarchical model is known as the "no 3-way interaction model"

$$p_{ijk} = \theta_{ij}^{(12)} \theta_{ik}^{(13)} \theta_{jk}^{(23)}.$$

For binary variables, its complex variety has dimension 19 and degree 4. It is cut out by the quartic $p_{000}p_{011}p_{101}p_{110} - p_{001}p_{010}p_{100}p_{111}$.

► The marginal independence is given implicitly by factorizations of marginal distributions

$$\sum_{k} p_{ijk} = \sum_{j,k} p_{ijk} \cdot \sum_{i,k} p_{ijk}, \quad \sum_{j} p_{ijk} = \sum_{j,k} p_{ijk} \cdot \sum_{i,j} p_{ijk}, \quad \sum_{i} p_{ijk} = \sum_{i,k} p_{ijk} \cdot \sum_{i,j} p_{ijk}.$$

Its dimension is 5 and it has degree 8.

The defining ideal of \mathcal{M}_{Σ} is generated by homogeneous, quadratic polynomials coming from the Segre equations for each $\sigma \in \Sigma$, e.g., for $\Sigma = [12, 13, 23]$,

$$p_{000}p_{110} + p_{001}p_{110} + p_{000}p_{111} + p_{001}p_{111} = p_{010}p_{100} + p_{011}p_{100} + p_{010}p_{101} + p_{011}p_{101}$$
(1 \pm 2)

$$p_{000}p_{101} + p_{010}p_{101} + p_{000}p_{111} + p_{010}p_{111} = p_{001}p_{100} + p_{011}p_{100} + p_{001}p_{110} + p_{011}p_{110}$$
(1 \pm 3)

$$p_{000}p_{011} + p_{011}p_{100} + p_{000}p_{111} + p_{100}p_{111} = p_{001}p_{010} + p_{010}p_{101} + p_{001}p_{110} + p_{101}p_{110}$$
(2 \pm 3)

The defining ideal of \mathcal{M}_{Σ} is generated by homogeneous, quadratic polynomials coming from the Segre equations for each $\sigma \in \Sigma$, e.g., for $\Sigma = [12, 13, 23]$,

$$q_{\varnothing}q_{12}=q_1q_2 \tag{1 1 2}$$

$$q_{\varnothing}q_{13}=q_1q_3 \tag{1 11 3}$$

$$q_{\varnothing}q_{23}=q_2q_3 \qquad (2 \perp \!\!\! \perp 3)$$

In the *Möbius coorindates* q_{\bullet} , the ideal becomes toric.

In every state space set $[d_j]$ replace the last element d_j by +. The Möbius coordinate $q_{i_1...i_n}$ equals the linear form in p_{\bullet} coordinates where + indices are summed over, e.g.,

$$\begin{aligned} q_{01+} &= p_{01\underline{0}} + p_{01\underline{1}}, \\ q_{+0+} &= p_{\underline{000}} + p_{\underline{001}} + p_{\underline{100}} + p_{\underline{101}}, \end{aligned} \qquad q = q_{+\dots+} = \sum_{i_1\dots i_n} p_{i_1\dots i_n}.$$

In every state space set $[d_j]$ replace the last element d_j by +. The Möbius coordinate $q_{i_1...i_n}$ equals the linear form in p_{\bullet} coordinates where + indices are summed over, e.g.,

$$\begin{aligned} q_{01+} &= p_{01\underline{0}} + p_{01\underline{1}}, \\ q_{+0+} &= p_{\underline{000}} + p_{\underline{001}} + p_{\underline{100}} + p_{\underline{101}}, \end{aligned} \qquad q = q_{+\dots+} = \sum_{i_1\dots i_n} p_{i_1\dots i_n}.$$

Let φ^* be the linear coordinate change $\mathbb{R}[q_{\bullet}] \to \mathbb{R}[p_{\bullet}]$ and let ψ be the correspondence $p_{\bullet} \leftrightarrow q_{\bullet}$ defined by interchanging d_j and +.

In every state space set $[d_j]$ replace the last element d_j by +. The Möbius coordinate $q_{i_1...i_n}$ equals the linear form in p_{\bullet} coordinates where + indices are summed over, e.g.,

$$\begin{aligned} q_{01+} &= p_{01\underline{0}} + p_{01\underline{1}}, \\ q_{+0+} &= p_{\underline{0}0\underline{0}} + p_{\underline{0}0\underline{1}} + p_{\underline{1}0\underline{0}} + p_{\underline{1}0\underline{1}}, \end{aligned} \qquad q = q_{+...+} = \sum_{i_1...i_n} p_{i_1...i_n}.$$

Let φ^* be the linear coordinate change $\mathbb{R}[q_{\bullet}] \to \mathbb{R}[p_{\bullet}]$ and let ψ be the correspondence $p_{\bullet} \leftrightarrow q_{\bullet}$ defined by interchanging d_j and +.

Lemma

The Segre variety $S = S(d_1, ..., d_n)$ is preserved under the coordinate change. More precisely, $\psi(I_S) = \varphi^{*-1}(I_S)$.

A small miracle: $\psi(p_{00}p_{11}-p_{01}p_{10})=q_{00}q_{++}-q_{0+}q_{+0}=p_{00}p_{11}-p_{01}p_{10}.$

Toric representation theorem

Lemma (Kirkup (2007))

The marginal independence model equals $\mathcal{M}_{\Sigma} = \mathcal{S} + \mathcal{L}_{\Sigma}$ where \mathcal{L}_{Σ} is the linear subspace with marginals $P_{\sigma} = 0$ for all $\sigma \in \Sigma$.

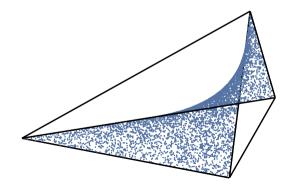
Proof.

- ▶ Given $P \in \mathcal{M}_{\Sigma}$, take its marginals P_j , $j \in [n]$, corresponding to the distributions of the individual random variables X_j .
- ▶ $P' = \bigotimes_j P_j \in \mathcal{S}$ and $P P' \in \mathcal{L}_{\Sigma}$ since P and P' have identical marginals and P_{σ} and P'_{σ} are both completely independent.

Toric representation theorem

Lemma (Kirkup (2007))

The marginal independence model equals $\mathcal{M}_{\Sigma} = \mathcal{S} + \mathcal{L}_{\Sigma}$ where \mathcal{L}_{Σ} is the linear subspace with marginals $P_{\sigma} = 0$ for all $\sigma \in \Sigma$.



Toric representation theorem

Theorem

The variety of the marginal independence model \mathcal{M}_{Σ} is irreducible and its prime ideal is toric in Möbius coordinates. That is, it has a parametrization by monomials and its ideal is generated by binomials. The parametrization is

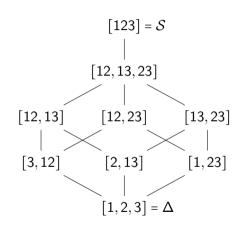
$$q_{i_1...i_n} \mapsto \prod_{j:i_j \neq +} \theta_{i_j}^{(j)}$$
 for $\{j: i_j \neq +\} \in \Sigma$.

Moreover, the statistical model \mathcal{M}_{Σ} is a contractible semialgebraic set of dimension

$$\sum_{j=1}^n (d_j-1) + \sum_{\tau \notin \Sigma} \prod_{j \in \tau} (d_j-1).$$

Marginal independence models: Properties

- ▶ Nice parametrization as Segre + linear space.
- Nice binomial equations in Möbius coordinates (but degrees can be high).
- ▶ Contractible statistical models.
- ▶ Stratify the probability simplex.
- ► Contain our random graph models and more!



Better coordinates for conditional independence ideals

Consider the constraints $\{X_1 \perp \!\!\! \perp X_2, X_1 \perp \!\!\! \perp X_2 \mid (X_3, X_4), X_1 \perp \!\!\! \perp X_4, X_2 \perp \!\!\! \perp X_4, X_3 \perp \!\!\! \perp X_4 \}$ on four binary random variables. Does there exist a distribution which satisfies all of them and no others?

```
P0100P1000 = P0000P1100, \qquad P0101P1001 = P0001P1101, \qquad P0110P1010 = P0010P1110, \qquad P0111P1011 = P0011P1111 = P0011P1111 = P011P1011 = P0110P1010 + P0100P1000 + P0101P1000 + P0111P1000 + P0101P1000 + P0100P1001 + P0101P1001 + P0110P1001 + P0111P1001 + P0100P1010 + P0100P1010 + P0101P1010 + P0110P1010 + P0100P1010 + P0100P1010 + P0100P1010 + P0100P1010 + P0100P1010 + P0000P1100 + P0000P1100 + P0001P1100 + P0001P1100 + P0001P1100 + P0000P1101 + P0000P1101 + P0000P1101 + P0010P1101 + P0010P1111 + P0010P1111 + P0000P1101 + P0010P1111 + P0010P1111 + P0010P1111 + P0010P1111 + P0010P1111 + P0010P1111 + P0010P1110 + P0010P1100 + P0011P1000 + P0011P1100 + P0011P1100 + P0011P1100 + P0011P1100 + P0011P1100 + P0010P1011 + P0010P1011 + P0010P1011 + P0100P1011 + P0100P1011 + P0100P1011 + P0100P1011 + P0100P1011 + P0100P1111 + P
```

•••••

Better coordinates for conditional independence ideals

Consider the constraints $\{X_1 \perp \!\!\! \perp X_2, X_1 \perp \!\!\! \perp X_2 \mid (X_3, X_4), X_1 \perp \!\!\! \perp X_4, X_2 \perp \!\!\! \perp X_4, X_3 \perp \!\!\! \perp X_4 \}$ on four binary random variables. Does there exist a distribution which satisfies all of them and no others?

$$q_{3}q_{4}q_{1234} = q_{134}q_{234}$$

$$q_{3}q_{123}q_{4} + q_{13}q_{23} + q_{134}q_{234} + q_{3}q_{1234} = q_{3}q_{4}q_{1234} + q_{3}q_{123} + q_{23}q_{134} + q_{13}q_{234}$$

$$q_{1}q_{2}q_{4}^{2} + q_{3}q_{4}q_{124} + q_{134}q_{234} + q_{4}q_{1234} = q_{2}q_{4}q_{134} + q_{1}q_{4}q_{234} + q_{3}q_{4}q_{1234} + q_{4}q_{124}$$

$$q_{1}q_{2}q_{4}^{2} + q_{1}q_{2}q_{3} + q_{2}q_{13}q_{4} + q_{1}q_{23}q_{4} + q_{3}q_{4}q_{124} + q_{13}q_{23} + q_{2}q_{134} +$$

$$q_{1}q_{234} + q_{134}q_{234} + q_{3}q_{1234} + q_{4}q_{1234} + q_{123} + q_{124} =$$

$$q_{1}q_{2}q_{3}q_{4} + q_{1}q_{2}q_{4} + q_{2}q_{4}q_{134} + q_{1}q_{4}q_{234} + q_{3}q_{4}q_{1234} + q_{2}q_{13} + q_{1}q_{23} + q_{3}q_{123} +$$

$$q_{123}q_{4} + q_{3}q_{124} + q_{4}q_{124} + q_{2}q_{4}q_{134} + q_{13}q_{234} + q_{1234}.$$

Better coordinates for conditional independence ideals

Consider the constraints $\{X_1 \perp \!\!\! \perp X_2, X_1 \perp \!\!\! \perp X_2 \mid (X_3, X_4), X_1 \perp \!\!\! \perp X_4, X_2 \perp \!\!\! \perp X_4, X_3 \perp \!\!\! \perp X_4 \}$ on four binary random variables. Does there exist a distribution which satisfies all of them and no others? Yes!

$$q_{1234} = \frac{q_{134}q_{234}}{q_3q_4}$$

$$q_{123} = \frac{q_4q_{13}q_{23} - q_4q_{13}q_{234} - q_4q_{134}q_{23} + q_{134}q_{234}}{q_3q_4(1 - q_4)}$$

$$q_{124} = \frac{q_{134}q_{234} - q_{134}q_2q_3q_4 - q_1q_{234}q_3q_4 + q_1q_2q_3q_4^2}{q_3q_4(1 - q_3)}$$

$$q_{134} = \frac{q_{13}((q_{234}q_4 - q_2q_3q_4^2) - (q_{23}q_4 - q_2q_3q_4)) + q_1q_3q_4(1 - q_4)(q_{23} - q_2q_3(q_{234} - q_{23}q_4))}{q_{234} - q_{23}q_4}$$

Parameter estimation

Given a statistical model \mathcal{M} and a sample distribution $U \in \Delta$, we seek the point in \mathcal{M} which best "explains" the observations in U.

Parameter estimation

Given a statistical model \mathcal{M} and a sample distribution $U \in \Delta$, we seek the point in \mathcal{M} which best "explains" the observations in U.

- ▶ Maximum likelihood: $\max \sum u_{\bullet} \log p_{\bullet}$ s.t. $P \in \mathcal{M}$.
- ▶ Euclidean distance: $\min \sum ||u_{\bullet} p_{\bullet}||^2$ s.t. $P \in \mathcal{M}$.

Parameter estimation

Given a statistical model \mathcal{M} and a sample distribution $U \in \Delta$, we seek the point in \mathcal{M} which best "explains" the observations in U.

- ▶ Maximum likelihood: $\max \sum u_{\bullet} \log p_{\bullet}$ s.t. $P \in \mathcal{M}$.
- ▶ Euclidean distance: $\min \sum ||u_{\bullet} p_{\bullet}||^2$ s.t. $P \in \mathcal{M}$.

For
$$\mathcal{M} = \mathcal{S}(2,2,2)$$
, i.e., $\Sigma = [123]$, and $U = (2^{-1},2^{-2},2^{-3},2^{-4},2^{-5},2^{-6},2^{-7},\underline{2^{-7}})$:

Computed using HomotopyContinuation.jl.

Database of small models

https://mathrepo.mis.mpg.de/MarginalIndependence

dimension	degree	mingens	f-vector	simplicial complex Σ	ED	ML
15	1	()	$(1,4)_5$	[1, 2, 3, 4]	1	1
14	2	(1)	$(1,4,1)_6$	[3, 4, 12]	5	1
13	3	(3)	$(1,4,2)_7$	[4, 12, 13]	5	9
13	4	(2)	$(1,4,2)_7$	[14, 23]	25	1041
12	4	(6)	$(1,4,3)_8$	[12, 13, 14]	5	209
12	5	(5)	$(1,4,3)_8$	[12, 14, 23]	21	1081
12	5	(5)	$(1,4,3)_8$	[4, 12, 13, 23]	21	17
			•••			
8	16	(21)	$(1,4,6,1)_{12}$	[14, 24, 34, 123]	117	8542
7	18	(28)	$(1,4,6,2)_{13}$	[34, 123, 124]	89	2121
6	20	(36)	$(1,4,6,3)_{14}$	[123, 124, 134]	89	505
5	23	(44)	$(1,4,6,4)_{15}$	[123, 124, 134, 234]	169	561
4	24	(55)	$(1,4,6,4,1)_{16}$	[1234]	73	1

Open ends

- ▶ Kirkup: Is the toric variety of \mathcal{M}_{Σ} always Cohen-Macaulay?
- ► For binary models of matroids, the polytope of the toric variety is the matroid's independent set polytope; see White's conjecture.
- Side story: Entropic matroids.
- ▶ Are the open models $\mathcal{M}_{\Sigma} \cap \Delta^{\circ}$ smooth manifolds?
- ▶ How to select a fitting marginal independence model for given data?
- ▶ Is the real solution to the affine ED problem generically unique?

References

- Tobias Boege, Sonja Petrović, and Bernd Sturmfels. *Marginal Independence Models*. 2021. arXiv: 2112.10287 [math.ST].
- Mathias Drton and Thomas S. Richardson. "Binary models for marginal independence". In: J. R. Stat. Soc., Ser. B, Stat. Methodol. 70.2 (2008), pp. 287–309. DOI: 10.1111/j.1467-9868.2007.00636.x.
- George A. Kirkup. "Random variables with completely independent subcollections". In: *J. Algebra* 309.2 (2007), pp. 427–454. DOI: 10.1016/j.jalgebra.2006.06.023.
- Seth Sullivant. *Algebraic Statistics*. Vol. 194. Graduate Studies in Mathematics. American Mathematical Society, 2018.