Tobias Boege joint work with Garett Cunningham

Computational methods in Gaussian conditional independence inference

MathCoRe seminar 4 Nov 2020

Gaussian conditional independence

- Finite ground set $[n] = \{1, ..., n\}$ indexing some objects ξ_i .
- CI statement (ij|K) abbreviating $\xi_i \perp \!\!\! \perp \xi_j \mid \xi_K$.
- All CI statements $A_n = \{(ij|K) : ij \in {[n] \choose 2}, K \subseteq [n] \setminus ij\}.$

Let $\xi \sim \mathcal{N}(\mu, \Sigma)$ be a vector of n random variables with a joint regular Gaussian distribution ($\Sigma \in \mathrm{PD}_n$), then

$$\xi_i \perp \!\!\! \perp \xi_j \mid \xi_K \quad \Leftrightarrow \quad \det \Sigma_{iK,jK} = 0.$$

$$\Leftrightarrow \qquad \qquad \qquad \parallel$$

$$(ij|K) \qquad \qquad \det \Sigma_{ij|K}$$

Realizability and the Implication problem

$$\llbracket \Sigma \rrbracket = \{ (ij|K) \in \mathcal{A}_n : \det \Sigma_{ij|K} = 0 \}.$$

The sets $[\![\Sigma]\!]$ for $\Sigma\in\mathrm{PD}_n$ have a special combinatorial structure. For example:

$$(ij|L) \in \mathbb{L} \land (ij|kL) \in \mathbb{L} \Rightarrow (ik|L) \in \mathbb{L} \lor (jk|L) \in \mathbb{L}$$
 (*)

$$(ij|L) \wedge (ij|kL) \Rightarrow (ik|L) \vee (jk|L)$$
 (*)

for all distinct $i, j, k \in [n]$ and $L \subseteq [n] \setminus ijk$.

Goal. Describe all the sets $[\![\Sigma]\!]$, the CI structures *realizable* by regular Gaussian distributions.

Observation. Knowing all realizable structures is equivalent to knowing all valid inference rules of the form (*).

All valid inference rules for Gaussians can be "symmetrized":

$$(12|) \wedge (12|3) \Rightarrow (13|) \vee (23|) \text{ for } n = 3 \Leftrightarrow$$

$$(ij|L) \wedge (ij|kL) \Rightarrow (ik|L) \vee (jk|L) \quad \forall i,j,k,L \text{ for every } n \geq 3.$$

Theorem (Šimeček / Sullivant). No finite set of inference rules exactly describes regular Gaussian CI structures.

Theorem. Every finite set of inference rules which allows all regular Gaussian CI structures allows asymptotically $2^{2^{\Omega(n)}}$ structures. The number of Gaussian CI structures is bounded by $2^{\mathcal{O}(n^3)}$.

Theme: properties of realizable structures give valid inference rules. Derive valid rules from approximations of realizable structures.

- Combinatorial compatibility & SAT solvers
- Information inequalities & LP solvers
- 3 The selfadhesivity phenomenon
- 4 Real algebra & Semidefinite programming

Combinatorial compatibility

The Gaussian CI configuration space is the image of

$$\Sigma \mapsto (p_I(\Sigma) : I \subseteq [n]) \cup (a_{ij|K}(\Sigma) : (ij|K) \in \mathcal{A}_n).$$

Study the zero patterns of configuration vectors. There exist polynomial relations on them, for example

$$p_{kL}a_{ij|L} - p_La_{ij|kL} - a_{ik|L}a_{jk|L} = 0.$$
 (ET)

Combinatorial compatibility means "vanishing under uncertainty": What if we only knew that $p_I \neq 0$ and whether $a_{ij|K} = 0$ or $a_{ij|K} \neq 0$?

$$(ij|L) \wedge (ij|kL) \Rightarrow (ik|L) \vee (jk|L)$$
$$(ij|L) \wedge (ik|L) \Rightarrow (ij|kL)$$
$$\vdots$$

Gaussoids

$$\begin{array}{lll} (ij|L) & \wedge (ik|jL) \Rightarrow (ik|L) \wedge (ij|kL) \\ (ij|kL) \wedge (ik|jL) \Rightarrow (ij|L) \wedge (ik|L) \\ (ij|L) & \wedge (ik|L) \Rightarrow (ij|kL) \wedge (ik|jL) \\ (ij|L) & \wedge (ij|kL) \Rightarrow (ik|L) \vee (jk|L) \end{array}$$

For n = 4:

- All subsets of A_4 : 16,777,216
- Gaussoids: 679
- Realizable gaussoids: 629

For n = 5:

- All subsets of A_5 : 1,208,925,819,614,629,174,706,176
- Gaussoids: 60,212,776
- Realizable gaussoids: ???

Tools: AllSAT solver to enumerate satisfying assignments.

Breakout break

Oriented gaussoids

$$p_{kL}a_{ij|L} - p_La_{ij|kL} - a_{ik|L}a_{jk|L} = 0$$
 (ET)

What if we only knew that $\operatorname{sgn} p_I = +1$ and the value of $\operatorname{sgn} a_{ij|K}$?

$$+(ij|L) \wedge -(ij|kL) \Rightarrow [+(ik|L) \wedge +(jk|L)]$$
$$\vee [-(ik|L) \wedge -(jk|L)]$$

For n = 4:

Gaussoids: 679

• Orientable gaussoids: 629

For n = 5:

• Gaussoids: 60,212,776

Orientable gaussoids: 20,584,290

Tools: AllSAT and incremental SAT solver to compute projected satisfying assignments.

The multiinformation region

$$a_{ij|L}^2 = p_{iL}p_{jL} - p_Lp_{ijL} \tag{FT}$$

The Gaussian multiinformation region is the image of

$$\Sigma \mapsto (\log p_I(\Sigma) : I \subseteq [n]).$$

By (FT), the Gaussian multiinformation functions $m(I) = \log \det \Sigma_I$ satisfy the following *linear information inequalities*

$$\Delta_{ij|K} m := m(iK) + m(jK) - m(ijK) - m(K) \ge 0, \quad \text{(Submodularity)}$$

and submodularity at $\Delta_{ij|K}$ is tight if and only if $(ij|K) \in \llbracket \Sigma \rrbracket$.

Information inequalities

Linear information inequalities at the multiinformation region of the form

$$\sum_{\beta \in \mathcal{M}} c_{\beta} \Delta_{\beta} m \leq \sum_{\alpha \in \mathcal{L}} c_{\alpha} \Delta_{\alpha} m, \ c_{\alpha}, c_{\beta} > 0, \ \forall m$$

with $\mathcal{L}, \mathcal{M} \subseteq \mathcal{A}_n$ encode CI inference rules

$$\bigwedge_{\alpha \in \mathcal{L}} \alpha \Rightarrow \bigwedge_{\beta \in \mathcal{M}} \beta.$$

CI implication: does tightness of some inequalities imply tightness of others? Study the *face lattice* of polyhedral cones spanned by valid linear information inequalities.

Semimatroids

The (balanced) Shannon information inequalities define a rational polyhedral cone in \mathbb{R}^{2^n} whose elements are valid inequalities at the Gaussian multiinformation region. The CI inference rules encoded in its face lattice define *semimatroids*.

For n = 4:

Gaussoids: 679

Semimatroidal gaussoids: 629

For n = 5:

Gaussoids: 60,212,776

Semimatroidal gaussoids: 39,807,192

 Semimatroidal orientable gaussoids: 20,576,142, 8,148 less than just orientable gaussoids.

Tools: Exact rational LP solver to find an inner point on a face of the cone or, alternatively, a Farkas certificate.

Selfadhesivity

Theorem. Positive definite matrices are *selfadhesive* in the sense that for every $\Sigma \in \mathrm{PD}_N$ and every $I \subseteq N$ there exist a copy M of N with $N \cap M = I$ and $\Phi \in \mathrm{PD}_{NM}$ such that:

- $\Phi_N = \Sigma$ and $\Phi_M = \Sigma$,
- $\Phi_{N,M}$ has rank exactly $|N \cap M|$.

Such a Φ is an adhesive extension of Σ at I.

Realizable CI structures inherit *structural* selfadhesivity properties, which are necessary for realizability:

- can be glued as gaussoids (apparently trivial?),
- can be glued as orientable gaussoids (19,723,980/20,584,290),
- can be glued as semimatroids (39,595,332/39,807,192),
- . . .

Outlook: Formal realizations

Transfer principle. Let $\mathbb K$ be an ordered field extension of $\mathbb R$. Then for every matrix Σ over $\mathbb K$ which satisfies

$$\det \Sigma_I > 0$$
 in \mathbb{K} for all $I \subseteq [n]$,

the formal CI structure $[\![\Sigma]\!]$ is realizable over $\mathbb R.$

$$\begin{pmatrix} 1 & g & \varepsilon f & \varepsilon \\ g & 1 & 0 & \varepsilon g \\ \varepsilon f & 0 & 1 & f \\ \varepsilon & \varepsilon g & f & 1 \end{pmatrix}, \quad f = \frac{2\varepsilon}{1+\varepsilon^2}, \quad g = \frac{1-\varepsilon^2}{1+\varepsilon^2}$$

over $\mathbb{R}(\varepsilon)$, $\varepsilon > 0$ infinitesimal, proves realizability of

$$\{(13|4), (14|23), (23|), (24|1)\}.$$

Outlook: Optimization

Real algebraic geometry has an exact algebraic solution for the implication / realizability problem (the real deal, not a relaxation!):

Theorem. The inference rule $\bigwedge \mathcal{L} \Rightarrow \bigvee \mathcal{M}$ is valid for regular Gaussians if and only if $\prod_{(ij|K)\in\mathcal{M}} a_{ij|K}$ vanishes on the semialgebraic set of matrices Σ given by

$$\{\det \Sigma_{ij|\mathcal{K}} = 0 \ \forall (ij|\mathcal{K}) \in \mathcal{L}\} \cap \{\det \Sigma_I > 0 \ \forall I \subseteq [n]\}.$$

This happens if and only if

$$\prod_{(ij|K)\in\mathcal{M}} \mathsf{a}_{ij|K} \;\in\; \sqrt[\mathbb{R}]{\mathcal{I}(\mathsf{a}_{ij|K}:(ij|K)\in\mathcal{L}) + \mathcal{I}(1-y_I^2p_I:I\subseteq[n])}$$

in the polynomial ring $\mathbb{R}[\Sigma, y_I : I \subseteq [n]]$.

Tools: Polynomial optimization and SDP relaxations.

Tobias Boege, Alessio D'Alì, Thomas Kahle, and Bernd Sturmfels.
The Geometry of Gaussoids.

Found, Comput. Math., 10(4):775–812, 2010.

Found. Comput. Math., 19(4):775–812, 2019.

Terence H. Chan.

Balanced information inequalities.

IEEE Trans. Inform. Theory, 49(12):3261–3267, 2003.

František Matúš.
Conditional independence structures examined via minors.

Ann. Math. Artif. Intell., 21(1):99–30, 1997.

František Matúš.
Adhesivity of polymatroids.

Discrete Math., 307(21):2464–2477, 2007.