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The mantra of algebraic statistics

Statistical models are semialgebraic sets*

The set of all centered, standardized Gaussian
distributions parametrized by their correlation

matrices
1 a b
>=|la 1 c|ePD;3

b c 1

which satisfy the conditional independence
&1 1 & | &3, or in algebraic terms: a = bc.

>

*sometimes
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Conditional independence

Conditional independence &; 1L §; | {k is a notion from statistics which asserts an
information-theoretical relation: if the outcome of the random variable & for all
components k € K is known, then the outcome of §; is independent of that of ¢;:

p(&i=x.&=y |k =2)=a(x,z) by, z).

In other words: the distribution of &;;c factors into its marginals & and {jk.
— complexity reduction
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Conditional independence

Conditional independence &; 1L §; | {k is a notion from statistics which asserts an
information-theoretical relation: if the outcome of the random variable & for all
components k € K is known, then the outcome of §; is independent of that of ¢;:

p(&i=x.&=y |k =2)=a(x,z) by, z).

In other words: the distribution of &;;c factors into its marginals & and {jk.
— complexity reduction

For Gaussian distributions, every conditional independence statement &; 1L &; | {x
corresponds to a polynomial equation fjx = 0 on the covariance matrix, e.g.,

&11L& | & < 011012 =013 023.

>
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For geometers: conditional independence » collinearity
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Reasoning is geometry (which is algebra)

Reasoning: if a Gaussian distribution satisfies &1 1L &
and &1 1L & | &3, then will it also satisfy & 1 &37

A D
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Reasoning is geometry (which is algebra)

Reasoning: if a Gaussian distribution satisfies &1 1L &
and &1 1L & | &3, then will it also satisfy & 1 &37

On the space of positive-definite 3 x 3-matrices
defined by the equations

fojp =012 =0,

flo3 = 011012 - 013023 =0

does the polynomial fo35 = 023 vanish as well?

No (see image).

>
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Reasoning is geometry (which is algebra)

Reasoning: if a Gaussian distribution satisfies &1 1L &
and &1 1L & | &3, then will it also satisfy & 1 &37

But we have

011 fiojg — fi2p = fi3jp - Fa3)p

Hence algebra proves this inference rule:

(G L&)A(E1 & [E&) = (§1183) v (& 1E).

>
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Reasoning is geometry (which is algebra)

Reasoning: if a Gaussian distribution satisfies &1 1L &
and & 1L & | &3, then will it also satisfy & 11 €37
But we have

011 fioig — 123 = fi3jp " F23)-

Hence algebra proves this inference rule:

(Eu&)A (61L& [E&) = (§1183) v (ELE).

Theorem (Positivstellensatz)
Every true inference rule for Gaussians has a “proof polynomial” over Z. D
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Graphical models

Graphical models are a popular tool to represent dependences among random variables.
Vertices are random variables, edges and paths are dependencies (think: information is
exchanged along edges).

6 1 ) 2 because there is an edge between them.
/ ™~ 5 1 ) 6 because there is a path.
4 N\ 116 |4,5 because all paths 1 - 6 hit 4 or 5.
‘ 7 116]2,7 for the same reason.
3/ \1/ 146]|2,4 because 1 -7 — 5 — 6 avoids 2 and 4.
The conditional independences modeled by a graph is given by all its vertex cuts. D
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Gaussian graphical models

Theorem
Let G = (V,E) be an undirected graph and K a generic positive-definite adjacency matrix:
1, ifi=},
kij=40, ifij¢E,

€ij, otherwise.

Then ¥ = K1 satisfies exactly the same conditional independence statements as G.

The linear concentration model specified by G consists of all matrices K above.
It is a spectrahedron. Its inverse is called the Cl model M(G) of G.

>
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Convexity

Theorem (Matuds 2012)

A Gaussian Cl model M (given by any set of conditional independences &; L& | £k ) is
convex if and only if M = M(G)™ for some graph G.

Thus optimizing over a linear concentration model is an instance of semidefinite

programming:
min  f(X)
s.t. Xj=0forij¢E,
> >0.
Linear concentration models are the only Cl models which allow this formulation. D
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The following talks

Xiangying Chen: Maximum likelihood degree.
Andreas Kretschmer: Double Markovian models.

Philip Dorr: Coxeter group statistics.
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