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The mantra of algebraic statistics

Statistical models are semialgebraic sets∗

The set of all centered, standardized Gaussian
distributions parametrized by their correlation
matrices
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which satisfy the conditional independence
ξ1 á ξ2 ∣ ξ3, or in algebraic terms: a = bc.

∗sometimes
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Conditional independence

Conditional independence ξi á ξj ∣ ξK is a notion from statistics which asserts an
information-theoretical relation: if the outcome of the random variable ξk for all
components k ∈ K is known, then the outcome of ξi is independent of that of ξj :

p(ξi = x , ξj = y ∣ ξK = z) = a(x , z) ⋅ b(y , z).

In other words: the distribution of ξijK factors into its marginals ξiK and ξjK .
→ complexity reduction

For Gaussian distributions, every conditional independence statement ξi á ξj ∣ ξK
corresponds to a polynomial equation fij ∣K = 0 on the covariance matrix, e.g.,

ξ1 á ξ2 ∣ ξ3 ⇔ σ11 ⋅ σ12 = σ13 ⋅ σ23.
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For geometers: conditional independence ≈ collinearity
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Reasoning is geometry (which is algebra)

Reasoning: if a Gaussian distribution satisfies ξ1 á ξ2
and ξ1 á ξ2 ∣ ξ3, then will it also satisfy ξ2 á ξ3?

4 Tobias Boege // Reasoning in Statistics through Algebra



Reasoning is geometry (which is algebra)

Reasoning: if a Gaussian distribution satisfies ξ1 á ξ2
and ξ1 á ξ2 ∣ ξ3, then will it also satisfy ξ2 á ξ3?

On the space of positive-definite 3 × 3-matrices
defined by the equations

f12∣∅ = σ12 = 0,
f12∣3 = σ11 ⋅ σ12 − σ13 ⋅ σ23 = 0

does the polynomial f23∣∅ = σ23 vanish as well?

No (see image).
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Reasoning is geometry (which is algebra)

Reasoning: if a Gaussian distribution satisfies ξ1 á ξ2
and ξ1 á ξ2 ∣ ξ3, then will it also satisfy ξ2 á ξ3?

But we have

σ11 ⋅ f12∣∅ − f12∣3 = f13∣∅ ⋅ f23∣∅.

Hence algebra proves this inference rule:

(ξ1 á ξ2) ∧ (ξ1 á ξ2 ∣ ξ3) ⇒ (ξ1 á ξ3) ∨ (ξ2 á ξ3).
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Reasoning: if a Gaussian distribution satisfies ξ1 á ξ2
and ξ1 á ξ2 ∣ ξ3, then will it also satisfy ξ2 á ξ3?

But we have

σ11 ⋅ f12∣∅ − f12∣3 = f13∣∅ ⋅ f23∣∅.

Hence algebra proves this inference rule:

(ξ1 á ξ2) ∧ (ξ1 á ξ2 ∣ ξ3) ⇒ (ξ1 á ξ3) ∨ (ξ2 á ξ3).

Theorem (Positivstellensatz)
Every true inference rule for Gaussians has a “proof polynomial” over Z.
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Graphical models

Graphical models are a popular tool to represent dependences among random variables.
Vertices are random variables, edges and paths are dependencies (think: information is
exchanged along edges).

4

2
3 1

5
6

7

1 /á 2 because there is an edge between them.
1 /á 6 because there is a path.
1á 6 ∣ 4,5 because all paths 1→ 6 hit 4 or 5.
1á 6 ∣ 2,7 for the same reason.
1 /á 6 ∣ 2,4 because 1→ 7→ 5→ 6 avoids 2 and 4.

The conditional independences modeled by a graph is given by all its vertex cuts.
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Gaussian graphical models

Theorem
Let G = (V ,E) be an undirected graph and K a generic positive-definite adjacency matrix:

kij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if i = j,
0, if ij /∈ E ,

εij , otherwise.

Then Σ = K−1 satisfies exactly the same conditional independence statements as G.

The linear concentration model specified by G consists of all matrices K above.
It is a spectrahedron. Its inverse is called the CI model M(G) of G.
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Convexity

Theorem (Matúš 2012)
A Gaussian CI model M (given by any set of conditional independences ξi á ξj ∣ ξK ) is
convex if and only if M=M(G)−1 for some graph G.

Thus optimizing over a linear concentration model is an instance of semidefinite
programming:

min f (Σ)
s. t. Σij = 0 for ij /∈ E ,

Σ ≻ 0.

Linear concentration models are the only CI models which allow this formulation.
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The following talks

Xiangying Chen: Maximum likelihood degree.

Andreas Kretschmer: Double Markovian models.

Philip Dörr: Coxeter group statistics.
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