Tobias Boege

Reasoning in Statistics through Algebra

Algebraic statistics tandem, 05 October 2021, Potsdam.

The mantra of algebraic statistics

Statistical models are semialgebraic sets*

The set of all centered, standardized Gaussian distributions parametrized by their correlation matrices

$$\Sigma = \begin{pmatrix} 1 & a & b \\ a & 1 & c \\ b & c & 1 \end{pmatrix} \in \mathsf{PD}_3$$

which satisfy the conditional independence $\xi_1 \perp \!\!\!\perp \xi_2 \mid \xi_3$, or in algebraic terms: a = bc.

Conditional independence

Conditional independence $\xi_i \perp \!\!\! \perp \xi_j \mid \xi_K$ is a notion from statistics which asserts an information-theoretical relation: if the outcome of the random variable ξ_k for all components $k \in K$ is known, then the outcome of ξ_i is independent of that of ξ_j :

$$p(\xi_i = x, \xi_j = y \mid \xi_K = z) = a(x, z) \cdot b(y, z).$$

In other words: the distribution of ξ_{ijK} factors into its marginals ξ_{iK} and ξ_{jK} . \rightarrow complexity reduction

Conditional independence

Conditional independence $\xi_i \perp \!\!\! \perp \xi_j \mid \xi_K$ is a notion from statistics which asserts an information-theoretical relation: if the outcome of the random variable ξ_k for all components $k \in K$ is known, then the outcome of ξ_i is independent of that of ξ_j :

$$p(\xi_i = x, \xi_j = y \mid \xi_K = z) = a(x, z) \cdot b(y, z).$$

In other words: the distribution of ξ_{ijK} factors into its marginals ξ_{iK} and ξ_{jK} . \rightarrow complexity reduction

For Gaussian distributions, every conditional independence statement $\xi_i \perp \!\!\! \perp \xi_j \mid \xi_K$ corresponds to a *polynomial equation* $f_{ij\mid K} = 0$ on the covariance matrix, e.g.,

$$\xi_1 \perp \!\!\!\perp \xi_2 \mid \xi_3 \Leftrightarrow \sigma_{11} \cdot \sigma_{12} = \sigma_{13} \cdot \sigma_{23}.$$

For geometers: conditional independence ≈ collinearity

Reasoning: if a Gaussian distribution satisfies $\xi_1 \perp \!\!\! \perp \xi_2$ and $\xi_1 \perp \!\!\! \perp \xi_2 \mid \xi_3$, then will it also satisfy $\xi_2 \perp \!\!\! \perp \xi_3$?

Reasoning: if a Gaussian distribution satisfies $\xi_1 \perp \!\!\! \perp \xi_2$ and $\xi_1 \perp \!\!\! \perp \xi_2 \mid \xi_3$, then will it also satisfy $\xi_2 \perp \!\!\! \perp \xi_3$?

On the space of positive-definite 3×3 -matrices defined by the equations

$$\begin{split} f_{12|\varnothing} &= \sigma_{12} = 0, \\ f_{12|3} &= \sigma_{11} \cdot \sigma_{12} - \sigma_{13} \cdot \sigma_{23} = 0 \end{split}$$

does the polynomial $f_{23|\varnothing}=\sigma_{23}$ vanish as well? No (see image).

Reasoning: if a Gaussian distribution satisfies $\xi_1 \perp \!\!\! \perp \xi_2$ and $\xi_1 \perp \!\!\! \perp \xi_2 \mid \xi_3$, then will it also satisfy $\xi_2 \perp \!\!\! \perp \xi_3$?

But we have

$$\sigma_{11} \cdot f_{12|\emptyset} - f_{12|3} = f_{13|\emptyset} \cdot f_{23|\emptyset}.$$

Hence algebra proves this inference rule:

$$(\xi_1 \perp \!\!\!\perp \xi_2) \wedge (\xi_1 \perp \!\!\!\perp \xi_2 \mid \xi_3) \Rightarrow (\xi_1 \perp \!\!\!\perp \xi_3) \vee (\xi_2 \perp \!\!\!\perp \xi_3).$$

Reasoning: if a Gaussian distribution satisfies $\xi_1 \perp \!\!\! \perp \xi_2$ and $\xi_1 \perp \!\!\! \perp \xi_2 \mid \xi_3$, then will it also satisfy $\xi_2 \perp \!\!\! \perp \xi_3$?

But we have

$$\sigma_{11} \cdot f_{12|\varnothing} - f_{12|3} = f_{13|\varnothing} \cdot f_{23|\varnothing}.$$

Hence algebra proves this inference rule:

$$(\xi_1 \perp\!\!\!\perp \xi_2) \wedge (\xi_1 \perp\!\!\!\perp \xi_2 \mid \xi_3) \Rightarrow (\xi_1 \perp\!\!\!\perp \xi_3) \vee (\xi_2 \perp\!\!\!\perp \xi_3).$$

Theorem (Positivstellensatz)

Every true inference rule for Gaussians has a "proof polynomial" over \mathbb{Z} .

Graphical models

Graphical models are a popular tool to represent dependences among random variables. Vertices are random variables, edges and paths are dependencies (think: information is exchanged along edges).

- $1 \not \perp 2$ because there is an edge between them.
- $1 \not \! \! \perp 6$ because there is a path.
- $1 \perp\!\!\!\perp 6 \mid 4,5$ because all paths $1 \rightarrow 6$ hit 4 or 5.
- $1 \perp \!\!\! \perp 6 \mid 2,7$ for the same reason.
- $1\not\perp 6\mid 2,4$ because $1\rightarrow 7\rightarrow 5\rightarrow 6$ avoids 2 and 4.

The conditional independences modeled by a graph is given by all its *vertex cuts*.

Gaussian graphical models

Theorem

Let G = (V, E) be an undirected graph and K a generic positive-definite adjacency matrix:

$$k_{ij} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } ij \notin E, \\ \varepsilon_{ij}, & \text{otherwise.} \end{cases}$$

Then $\Sigma = K^{-1}$ satisfies exactly the same conditional independence statements as G.

The linear concentration model specified by G consists of all matrices K above. It is a spectrahedron. Its inverse is called the CI model $\mathcal{M}(G)$ of G.

Convexity

Theorem (Matúš 2012)

A Gaussian CI model \mathcal{M} (given by any set of conditional independences $\xi_i \perp \!\!\! \perp \xi_j \mid \xi_K$) is convex if and only if $\mathcal{M} = \mathcal{M}(G)^{-1}$ for some graph G.

Thus optimizing over a linear concentration model is an instance of *semidefinite* programming:

min
$$f(\Sigma)$$

s.t. $\Sigma_{ij} = 0$ for $ij \notin E$,
 $\Sigma > 0$.

Linear concentration models are the only CI models which allow this formulation.

The following talks

Xiangying Chen: Maximum likelihood degree.

Andreas Kretschmer: Double Markovian models.

Philip Dörr: Coxeter group statistics.

