Tobias Boege # Two universality results for Gaussian CI models Magdeburg, April 28, 2021 # Gaussian conditional independence Consider random variables $(\xi_i)_{i\in \mathbb{N}} \sim \mathcal{N}(\mu, \Sigma)$. The conditional independence (CI) statement $\xi_i \perp \!\!\! \perp \xi_j \mid \xi_K$ conveys, informally, that if ξ_K is known, then learning the value of one variable does not give any information about the other one. #### Definition The polynomial $\Sigma[K] := \det \Sigma_{K,K}$ is a *principal minor* of Σ and $\Sigma[ij|K] := \det \Sigma_{iK,jK}$ is an *almost-principal minor*. If Σ is positive-definite, then $\Sigma[K] > 0$, and $\xi_i \perp \xi_j \mid \xi_K$ holds if and only if $\Sigma[ij \mid K] = 0$. ## **Almost-principal minors** $$\begin{split} & \Sigma[ij|k] = x_{ij} \\ & \Sigma[ij|k] = x_{ij} x_{kk} - x_{ik} x_{jk} \\ & \Sigma[ij|kl] = x_{ij} x_{kk} x_{ll} - x_{il} x_{jl} x_{kk} + x_{il} x_{jk} x_{kl} + x_{ik} x_{jl} x_{kl} - x_{ij} x_{kl}^2 - x_{ik} x_{jk} x_{ll} \\ & \Sigma[ij|klm] = x_{ij} x_{kk} x_{ll} x_{mm} + x_{im} x_{jm} x_{kl}^2 - x_{im} x_{jl} x_{kl} x_{km} - x_{il} x_{jm} x_{kl} x_{km} + x_{il} x_{jl} x_{km}^2 \\ & - x_{im} x_{jm} x_{kk} x_{ll} + x_{im} x_{jk} x_{km} x_{ll} + x_{ik} x_{jm} x_{km} x_{ll} - x_{ij} x_{km}^2 x_{ll} \\ & + x_{im} x_{jl} x_{kk} x_{lm} + x_{il} x_{jm} x_{kk} x_{lm} - x_{im} x_{jk} x_{kl} x_{lm} - x_{ik} x_{jm} x_{kl} x_{lm} \\ & - x_{il} x_{jk} x_{km} x_{lm} - x_{ik} x_{jl} x_{km} x_{lm} + 2 x_{ij} x_{kl} x_{km} x_{lm} + x_{ik} x_{jl} x_{kl} x_{mm} \\ & - x_{ij} x_{kk} x_{lm}^2 - x_{il} x_{jl} x_{kk} x_{mm} + x_{il} x_{jk} x_{kl} x_{mm} + x_{ik} x_{jl} x_{kl} x_{mm} \\ & - x_{ij} x_{kl}^2 x_{mm} - x_{ik} x_{jk} x_{ll} x_{mm} \\ & \vdots \end{split}$$ ### Models and inference #### **Definition** A CI constraint is a CI statement $\xi_i \perp \!\!\! \perp \xi_j \mid \xi_K$ or its negation $\neg(\xi_i \perp \!\!\! \perp \xi_j \mid \xi_K)$. They are algebraic conditions on the entries of Σ , equivalent to vanishing or non-vanishing of the almost-principal minors $\Sigma[ij|K]$. #### **Definition** The *model* of a set of CI constraints is the set of all positive-definite matrices which satisfy the constraints. #### Models and inference Consider two sets of CI statements \mathcal{L} and \mathcal{M} : Reasoning about relevance statements in normally distributed random variables is the same as reasoning about the vanishing of very special kinds of determinants in the positive-definite matrices. | Model M1 | Model M2 | Model M3 | Model M4 | Model M5 | Model M6 | Model M49 | Model M50 | Model M51 | Model M52 | Model M53 | | |---|--|--|--|--|---|--
--|--|---|---|--| | | 2 41-32 | | | | | 4000 | 4 0 -3 0 | 4000 | | | | | 0 4 1 - | | | | 0 4 2 -3 | | 0 4 1-2 | 0401 | 0 4 0 -3 | 0100 | -3 4 1 1 | | | 2 1 4 -
a -2 -3 -3 | | | | 2 2 4 -3 | | 0 1 4 -2 | 3 9 4 9 | 0.3 0 4 | 0011 | -3 1 4 3
e e -3 1 3 4 | | | | | - | | - | \sim | | | | | | | | Model M7 | Model M8 | Model M9 | Model M10 | Model M11 | Model M12 | Model M54 | Model M55 | Model M56 | Model M57 | Model M58 | | | 4 0 -2
0 4 -3 | | 9 4 2 -3 3
2 4 -3 1 | | | | | | · · | • | | | | -2 -3 4 | | | | | | r^ | 1 | 1 | | { } | | | | 4 - 2 2 -1 4 | | | | 0 1-2 0 4 | | | <u> </u> | a V a | () | | | Model M13 | Model M14 | Model M15 | Model M16 | Model M17 | Model M18 | Model M59 | Model M60 | Model M61 | Model M62 | Model M63 | Model M64 | | 0 4-12 | 2 0 4 1 2 -2 | 9 6 1 -4 2 | 4 0 2 -1 | 9 4 0 -2 1 | | 4 - 3 - 2 1 | 2 0 1 -1 | ◆ 5 0 4 ⋅3 | 8-2-4-7 | 10 0 4 -6 | 4 1 1 -2 | | -1 4 -2 | | | | | | -3 4 2 -2 | 0 2 -1 -1 | 052-4 | -2 8 4 -2 | 0 10 -3 -8 | 1 4 - 2 - 2 | | 2 -2 4 | | | | | | -2 2 4 2 | 1-12-1 | 4 2 5 -4 | -4 4 8 2 | 4-310 0 | 1.2 4.2 | | e e -2 2 -3 | 4 e e -2 -2 -2 - | e 23-3 (| 6 6 1334 | 0 12-24 | B 2-1-1 4 | e e 1-2 2 4 | | -3-4-45 | 0 -7-228 | -6-8 0 10 | 6 -2-2-2 4 | | Model M19 | Model M20 | Model M21 | Model M22 | Model M23 | Model M24 | Model M65 | Model M66 | Model M67 | Model M68 | Model M69 | Model M70 | | 402 | | | | | | 9 0 -6 -6 | | 14-13-11-7 | 10 0 -6 3 | 25 0 20 -15 | 1 2 1 1 · 1 | | 2-14 | | | | | | 0 9 3 -3 | 1 / 1 44 48 80 44 1 | 13 4 7 4 3 | 8-810-5 | /20 15 25 24 | 1 1/2004 / 4 4 4 4 | | -2-3 0 | | | 2 2 -1 4 | | | -6-3-19 | 35 -60 -64 80 | 7 2 13 14 | a 3 4 -5 10 | | -1-1-2 2 | | | | | | | | | | | | | | | Model M25 | Model M26 | Model M27 | Model M28 | Model M29 | Model M30 | Model M71 | Model M72 | Model M73 | Model M74 | Model M75 | - | | Model M25 | | Model M27 | Model M28 | Model M29 | Model M30 | Model M71 | Model M72 | Model M73 | Model M74 | Model M75 | Model M76 | | Model M25 | 3 0 8-3-6-4 | 9 804- | 0 10 -4 -5 -8 | 0 10 -4 -8 -5 | 4 0 -2 -2 | | 10 0 -6 0 | A 21-11 | 201-1 | 4 1 2 -1 | Model M76 | | 804 | 3 8-3-6-6 | 8 0 4 -2 | 10-4-5-8 | 10 -4 -8 -5 | 4 0 -2 -2 0 4 1 -1 | 5 0 -3 4
0 5 -4 -3
-3 -4 5 0 | 10 0 -6 0
0 10 -8 5
-6 -8 10 -4 | 2 1 -1 1
1 2 1 -1
1 1 2 -2 | 2 0 1 -1
0 2 -1 1
1 -1 2 -2 | 4 1 2 ·1
1 4 2 ·4
2 2 4 ·2 | Model M76
5 0 3-3
0 5-4 4
3-5 5-5 | | 8 0 4
0 8 4
4 4 8 | 3 8-3-6-6 | 8 0 4 -2
0 8 2 -5
4 2 8 -4 | 10 -4 -5 -8
-4 10 2 5
-5 2 10 1 | 10 -4 -8 -5
-4 10 2 8
-8 2 10 4 | 4 0 -2 -2
0 4 1 -1
-2 1 4 0 | 5 0 -3 4 0 5 4 -3 | 10 0 -6 0 | 21-11 | 201-1 | 4 1 2 -1 | Model M76 | | 8 0 4
0 8 4
4 4 8 8
-3 -7 -6 | 3 8-3-6-6
7 -3 8 4 4
6 -6 4 8 2 | 8 0 4
0 8 2
4 2 8
-2 -5 -4 | 10 -4 -5 -8
-4 10 2 5
-5 2 10 1 | 10 -4 -8 -5
-4 10 2 8
-8 2 10 4 | 4 0 -2 -2
0 4 1 -1
-2 1 4 0 | 5 0 -3 4
0 5 -4 -3
-3 -4 5 0 | 10 0 -6 0
0 10 -8 5
-6 -8 10 -4 | 2 1 -1 1
1 2 1 -1
1 1 2 -2 | 2 0 1 -1
0 2 -1 1
1 -1 2 -2 | 4 1 2 ·1
1 4 2 ·4
2 2 4 ·2 | Model M76
5 0 3-3
0 5-4 4
3-5 5-5 | | 8 0 4
0 8 4
4 4 8 8
-3 -7 -6 | 3 8 -3 -6 -4 -6 4 8 2 86 4 2 8 Model M32 | 8 0 4 -2
0 8 2 -4
4 2 8 -4
-2 -5 -4
Model M33 | 10 -4 -5 -8
-4 10 2 5
-5 2 10 1
-8 5 1 10
Model M34 | 10 -4 -8 -5
-4 10 2 8
-8 2 10 4
-5 8 4 10
Model M35 | 4 0 -2 -2
0 4 1 -1
-2 1 4 0
e -2 -1 0 4
Model M36 | 5 0 -3 4
0 5 -4 -3
-3 -4 5 0
4 -3 0 5
Model M77 | 10 0 -6 0
0 10 -8 5
-6 -8 10 -4
0 5 -4 10
Model M7B | 2 1-11
1 2 1-1
-1 1 2-2
1-1-2 2
Model M79
5 0 4 0 | 2 0 1 -1
0 2 -1 1
1 -1 2 -2
-1 1 -2 2
Model M80 | 4 1 2 -1
1 4 2 -4
2 2 4 -2
-1 -4 -2 4
Model MB1 | Model M76
5 0 3 -3
0 5 4 4
3 -5 5 -5
2 4 -5 5
Model M82
2 0 0 0 | | 8 0 4 - 0 8 4 - 4 4 8 - 3 - 7 - 6 Model M31 | 3 8 -3 -6 -6 7 -3 8 4 4 6 6 6 4 8 2 8 | 8 0 4 -2
0 8 2 -5
4 2 8 -3
-2 -5 -4
Model M33 | 10 -4 -5 -8 -4 10 2 5 -5 2 10 1 8 -8 5 1 10 Model M3-4 4 1 -3 -2 -1 4 1 2 | 10 -4 -8 -5 -4 10 2 8 -8 2 10 4 9 -5 8 4 10 MODEL M35 4 0 -2 -3 0 4 3 -2 | 4 0 -2 -2
0 4 1 -1
-2 1 4 0
-2 -1 0 4
Model M36
4 1 -2 2
1 4 -2 2 | 5 0 3 4
0 5 4 3 3
4 3 0 5
4 3 0 5
Model M77
2 0 1 0
2 1 - 2 | 10 0 -6 0
0 10 -8 5
-6 -8 10 -4
0 5 -4 10
Model M78
4-1 2-2
-1 4-2 2 | 2 1-11
1 2 1-1
-1 12 -2
1-1-2 2
Model M79
5 0 4 0
0 5 3 -5 | Model M80 | # 1 2 -1
1 4 2 -4
2 2 4 -2
-1 4 -2 4
Model MB1
2-2 -1 -2
2 2 1 2 | Model M76
5 0 3 -3
0 5 -4 4
3 -5 5 -5
-2 4 -5 5
Model M82
2 0 0 0
0 2 -2 1 | | 8 0 4 - 0 8 4 - 4 4 8 - 3
- 7 - 6 Model M3-1 12 - 3 - 6 - 6 6 12 | 3 8 -3 -6 -4 7 -3 8 4 4 6 6 -6 4 8 2 8 5 -6 4 2 8 5 5 -10 11 8 5 20 -10 11 8 5 10 -10 20 5 10 11 8 5 10 -10 20 5 10 11 8 5 10 -10 20 5 10 11 8 5 10 -10 20 5 10 11 8 5 10 -10 20 5 10 11 8 5 10 -10 20 5 10 11 8 5 10 -10 20 5 10 11 8 5 10 -10 20 5 10 11 8 5 10 -10 20 5 10 11 8 5 10 -10 20 5 10 11 8 5 10 -10 20 5 10 11 8 5 10 -10 10 20 5 10 11 8 5 10 -10 10 20 5 10 11 8 5 10 -10 10 20 5 10 11 8 5 10 -10 10 20 5 10 11 8 5 10 -10 10 20 5 10 11 8 5 10 -10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 8 0 4 -2
0 8 2 -5
4 2 8 -4
-2 -5 -4 1
Model M33
4 0 -3 -1
0 4 0 0 1
-3 0 4 0 1 | 10 4 - 5 - 8
-4 10 2 5
-5 2 10 1
-8 5 1 10
Model M34
4 - 1 - 3 - 2
-1 4 1 2
-3 1 4 2 | 10 -4 -8 -5 -4 10 2 8 -8 2 10 4 -5 8 4 10 Model M35 4 0 -2 -3 0 4 3 -2 -2 3 4 0 | 4 0 -2 -2
0 4 1 -1
-2 1 4 0
-2 -1 0 4
Model M36
4 1 -2 2
1 4 -2 2
-2 -2 -2 4 -1 | 5 0 3 4
0 5 4 3 3
3 4 5 0
4 3 0 5
Model M77 | 10 0 -6 0
0 10 -8 5
-6 -8 10 -4
0 5 -4 10
Model M78
4-1 2 -2
-1 4 -2 2
2 -2 4 -2 | 2 1-1 1
1 2 1-1
-1 1 2-2
1-1-2 2
Model M79
5 0 4 0
0 5 3 5-3
0 5 3 5-3 | 2 0 1.1
0 2.1 1
1.1 2.2
1.1 1.2 2
Model MBO
2.1 -2.1
1.2 12
2.1 2.1
2.1 2.1 | 4 1 2 -1
1 4 2 -4
2 2 4 -2
-1 -4 -2 4
Model MB1
2 -2 -1 -2
-2 2 1 2
-1 1 2 1 2 | Model M76
5 0 3 -3
0 5 -4 4
3 -5 5 5
2 4 -5 5
Model M82
2 0 0 0
0 2 -2 1
0 -2 2 -1 | | 8 0 4 - 0 8 4 - 4 4 8 - 3 - 3 - 7 - 6 - 6 - 6 - 2 - 2 8 8 1 | 3 8 -3 -6 -4 7 7 -3 8 4 4 6 6 -6 4 8 2 8 7 -6 4 2 2 8 7 -5 -10 11 8 7 -10 -10 2 2 2 2 9 10 10 -6 2 2 | 8 0 4 -2
0 8 2 -4
4 2 8 -2 -2 -5 -4
0 4 0 1 -3 -1
0 4 0 1 -3 -1
0 3 1 1 4 | 10 -4 -5 -8
4 -10 2 5
5 2 10 1
-8 5 1 10
Model M34
4 -1 -3 -2
-1 4 1 2
-3 1 4 2
-2 2 2 4 | 10 -4 -8 -5
-4 10 2 8
-8 2 10 4
-5 8 4 10
Model M35
4 0 -2 -3
0 4 3 -2
-2 3 4 0
-3 -2 0 4 | 4 0 -2 -2
0 4 1 -1
-2 1 4 0
-2 -1 0 4
Model M36
 | 5 0 -3 4
0 5 -4 -3 -3 -4 5 0
4 -3 0 5
Model M77
2 0 1 0
0 2 1 -2
1 0 -2 -1 2 | 10 0 -6 0
0 10 -8 5
-8 -8 10 -4
0 5 -4 10
Model M7B
4-1 2 -2
-1 4 -2 2
-2 2 -4 4 | 2 1-1 1
1 2 1-1
-1 1 2-2
1-1-2 2
Model M79
5 0 4 0
0 5 3-5
0 -5-3 5 | 2 0 1 -1
0 2 -1 1
1 -1 2 -2
1 -1 2 2
Model MBO
2 -1 -2 -1
-1 2 1 2
-2 1 2 1
-1 2 1 2 | 4 1 2 -1
1 4 2 -4
2 2 4 -2
-1 -4 -2 4
Model MB1
2 -2 -1 -2
-2 2 1 2
-1 1 2 1 2 | Model M76
5 0 3 -3
0 5 -4 4
3 -5 5 -5
-2 4 -5 5
Model M82
2 0 0 0
0 2 -2 1 | | 8 0 4 4 8 4 8 4 4 8 8 5 -3 -7 -6 12 -3 -6 6 12 6 6 12 6 2 8 8 1 | 3 8 3 6 4
7 6 6 8 8
8 6 6 4 8 2
8 6 6 4 2 8
8 7 6 4 2 8
9 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 8 0 4 -2 4 2 8 4 2 8 4 2 8 4 2 8 4 2 8 4 2 8 4 2 8 4 2 8 4 2 8 4 8 4 | 10 -4 -5 -8
-4 10 2 5
-5 2 10 1
-8 5 1 10
Model M34
4 -1 -3 -2
-1 4 1 2
-2 2 2 4
Model M40 | 10 -4 -8 -5
-4 10 2 8
-8 2 10 4
-5 8 4 10
Model M35
4 0 -2 -3
0 4 3 -2
-2 3 4 0
Model M41 | 4 0 -2 -2
0 4 1 -1
-2 1 4 0
0 - 2 -1 0 4
Model M36
- 4 1 -2 2
1 4 -2 2
-2 -2 4 -1
- 2 2 -1 4
Model M42 | 5 0 3 4
0 5 4 3 3
3 4 5 0
4 3 0 5
Model M77 | 10 0-6 0
0 10-8 5
0-8 10-4
0 5 -4 10
Model M72
2-2 4-4
1-2 2-4
1-2 2-4
1-2 2-4
1-2 2-4
1-3 2-4
1-4 2-2
1-3 2-4
1-4 2-2
1-3 2-4
1-4 2-2
1-3 2-4
1-4 2-2
1-3 2-4
1-4 2-2
1-3 2-4
1-4 2-4 | 2 1 -1 1
1 2 1 -1
-1 1 2 -2
-1 1 1 -2 2
Model M79
5 0 4 0
0 5 3 -5
0 5 3 5
Model M85 | 2 0 1 -1
0 2 -1 1
1 -1 2 -2
-1 1 -2 -2
-1 2 1 2
-1 2 1 2
-2 1 2 1
-1 2 1 2
-2 1 2 1
-1 2 1 2
-2 1 2 1
-1 2 1 2 | 4 1 2 -1
1 4 2 -4
2 2 4 -2
-1 -4 -2 4
Model MB1
2 -2 -1 -2
-2 2 1 2
-1 1 2 1 2 | Model M76
5 0 3-3
0 5-4 4
3-5 5-5
-2 4-5 5
Model M82
2 0 0 0
0 2 -2 1
0 -2 2-1 | | 8 0 4 4 8 4 8 8 -3 -7 -6 Model M37 12 -3 -6 6 12 -2 8 81 Model M37 | 3 8-3-6-4 7 -3-8-4-8 8 -6-6-4-2 8 -6-6-4-2 8 -7-6-4-2 9 -7-6-10-10-10-10-10-10-10-10-10-10-10-10-10- | 8 0 4 0 8 2 4 2 8 4 2 8 4 2 8 4 2 8 4 2 8 4 0 -3 1 3 0 4 0 1 3 0 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 10.4.5.8
4.10.25
5.210.1
8.5110
Model M34
4.1.3.2
1.4.1.2
1.4.1.2
2.2.2.4
Model M40 | 10.4-8-5 410.28 8 210.4 9-5 8 410 Model M35 4 0.2-3 0 4 3-2 2 3 4 0 3-2 0 4 Model M41 | 4 0 2 - 2
0 4 1 - 1
- 2 1 4 0
- 2 - 1 0 4
Model M36
- 4 1 - 2
- 2 - 2 4 4
- 7 2 2 - 1 4
Model M42 | 0 0 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10 0 -6 0
0 10 -8 5
-8 10 -4
0 5 -4 10
Model M78
4-1 2 -2
1 4 -2 2 -4 4
-2 2 -4 4
Model M84 | 2 1 -1 1
1 2 1 -1
1 1 2 -2
1 1 1 -2 2
Model M79
5 0 4 0
5 3 -5
4 3 5 -3
0 5 -3 5
Model M85 | 2 0 1 -1
0 2 -1 1
-1 -1 2 -2
-1 1 -2 2
Model M80
2 -1 2 -1
-1 2 1 2
-2 1 2 1
-1 2 1 2
-1 2 1 2
-1 2 1 2
-1 2 1 2
-1 2 1 2 | 4 1 2 -1
1 4 2 -4
2 2 4 -2
-1 -4 -2 4
Model MB1
2 -2 -1 -2
-2 2 1 2
-1 1 2 1 2 | Model M76
5 0 3-3
0 5-4 4
3-5 5-5
-2 4-5 5
Model M82
2 0 0 0
0 2 -2 1
0 -2 2-1 | | 8 0 4 4 8 4 8 4 4 8 8 5 -3 -7 -6 12 -3 -6 6 12 6 6 12 6 2 8 8 1 | 3 8-3-6-4 7 3-8-4-8 8 | 8 0 4 -2 0 8 2 4 2 8 -4 2 5 -4 1 | 10 4 5 -8
4 10 2 5
2 10 1
3 5 110 1
Model M34
4 -1 -3 -2
1 4 1 2 -2 2 2 4
Model Mdel Mdel | 10 -4 -8 -5 -4 10 2 8 -8 2 10 4 10 2 8 -8 2 10 4 3 -5 8 4 10 10 Model M35 4 0 -2 -3 4 0 -3 -2 0 4 3 -2 -2 3 4 0 -3 -2 0 4 3 -2 -2 3 4 0 -3 -2 0 4 -3 -2 0 -4 -3 -3 -2 0 -4 -3 -3 -2 0 -4 -3 -3 -2 0 -4 -3 -3 -3 -2 0 -4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 | 4 0 2 - 2
0 4 1 - 1
- 2 1 4 0
- 2 - 1 0 4
Model M36
- 4 1 - 2
1 4 - 2
2 - 2 2 4 - 1
- 2 2 1 4
Model M42
- 4 0 - 2
0 4 3 0
0 4 3 0
0 4 3 0 | 5 0 -3 4
0 5 -4 -3 -3 -4 5 0
4 -3 0 5
Model M77
2 0 1 0
0 2 1 -2
1 0 -2 -1 2 | 10 0 - 6 0
0 10 - 8 5
0 10 - 8 5
0 10 - 8 5
0 5 - 4 10
0 5 - 4 10
0 5 - 4 10
0 1 4 - 2 2
- 1 4 - 2 2
- 2 2 4 4
- 2 2 4 4
Model M84
0 1 1 1 1 | 2 1 -1 1
1 2 1 -1
-1 1 2 -2
-1 1 1 -2 2
Model M79
5 0 4 0
0 5 3 -5
0 5 3 5
Model M85 | 2 0 1-1
0 2-1 1
-1 1 2-2
-1 1 2-2
-1 1 2-2
-2 2 1 2 1
-1 2 1 2
-2 1 2 1
-2 1 2 1
-2 1 2 1
-2 1 2 1
-2 1 2 1
-1 2 1 2
-1 2
- | 4 1 2 -1
1 4 2 -4
2 2 4 -2
-1 -4 -2 4
Model MB1
2 -2 -1 -2
-2 2 1 2
-1 1 2 1 2 | Model M76
5 0 3-3
0 5-4 4
3-5 5-5
-2 4-5 5
Model M82
2 0 0 0
0 2 -2 1
0 -2 2-1 | | 8 0 4 - 0 8 4 8 4 8 5 - 3 - 7 6 6 12 9 2 8 8 1 Model M37 10 0 6 6 12 9 0 10 0 6 6 10 0 10 0 10 0 10 0 10 0 1 | 3 8-3-6-4 6 | 8 0 4 -2 0 8 2 5 -4 1 | 10 4 5 -8
4 10 2 5
2 10 1
3 5 110 1
Model M34
4 -1 -3 -2
1 4 1 2 -2 2 2 4
Model Mdel Mdel | 10 -4 -8 -5 -4 10 2 8 -8 2 10 4 10 2 8 -8 2 10 4 3 -5 8 4 10 10 Model M35 4 0 -2 -3 4 0 -3 -2 0 4 3 -2 -2 3 4 0 -3 -2 0 4 3 -2 -2 3 4 0 -3 -2 0 4 -3 -2 0 -4 -3 -3 -2 0 -4 -3 -3 -2 0 -4 -3 -3 -2 0 -4 -3 -3 -3 -2 0 -4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 | 4 0 2 2 0 4 1 -1 1 4 0 2 -2 1 4 0 4 1 -1 1 -2 1 4 0 0 -2 -1 0 4 1 -1 1 -2 1 4 -2 2 -1 4 -2 2 2 -1 4 -2 2 2 -1 4 -2 2 2 -1 4 -2 2 2 -1 4 -2 2 2 -1 4 -2 2 2 -1 4 -2 2 2 -1 4 -2 2 2 -1 4 -2 2 2 -1 4 -2 -2 2 -1 4 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 | 5 0 3 4 3 0 5 4 3 3 3 4 5 0 0 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 10 0 -6 0
0 10 -8 5
-6 -8 10 -4
0 5 -4 10
Model M78
4-1 2-2
1-1 4-2 2
2-2 4-4
Model M84
1 0 0 0
1 1 1 1 1 | 2 1-1 1
1 2 1-1
1 1 2-2
1 1 2-2
1 1-1-2 2
Model M79
0 5 3-5
4 3 5-3
0 5-3 5
Model M85 | 2 0 1 1 1 0 2 -1 1 1 1 2 -2 1 1 1 2 -2 1 1 1 2 -2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 2 1 1 2 1
2 1 | 4 1 2 -1
1 4 2 -4
2 2 4 -2
-1 -4 -2 4
Model MB1
2 -2 -1 -2
-2 2 1 2
-1 1 2 1 2 | Model M76
5 0 3-3
0 5-4 4
3-5 5-5
-2 4-5 5
Model M82
2 0 0 0
0 2 -2 1
0 -2 2-1 | | 8 0 4 4 8 4 8 9 -3 -7 -6 Model M31 12 -3 -6 6 12 2 -2 8 81 Model M37 10 0 6 0 10 4 4 10 6 4 10 6 4 10 6 4 10 6 6 12 | 3 8-3-6-4 7 -3-8-4-8 8 | 8 0 4 -2 0 8 2 4 2 8 -4 2 5 -4 1 | 10 4 5 -8
4 10 2 5
2 10 1
3 5 110 1
Model M34
4 -1 -3 -2
1 4 1 2 -2 2 2 4
Model Mdel Mdel | 10 -4 -8 -5 -4 10 2 8 -8 -2 10 4 10 2 8 -8 2 10 4 -5 5 8 4 10 10 Model M35 4 0 -2 -3 4 0 -3 -2 0 4 3 -2 -2 3 4 0 -3 -2 0 4 3 -2 -2 3 4 0 -3 -2 0 -4 -3 -2 0 -4 -3 -2 0 -4 -3 -2 0 -4 -3 -2 0 -4 -3 -2 0 -4 -3 -2 0 -4 -3 -2 0 -4 -3 -2 0 -4 -3 -2 0 -4 -3 -2 0 -4 -3 -2 0 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 | 4 0 2 2 0 4 1 -1 1 4 0 2 -2 1 4 0 4 1 -1 1 -2 1 4 0 0 -2 -1 0 4 1 -1 1 -2 1 4 -2 2 -1 4 -2 2 2 -1 4 -2 2 2 -1 4 -2 2 2 -1 4 -2 2 2 -1 4 -2 2 2 -1 4 -2 2 2 -1 4 -2 2 2 -1 4 -2 2 2 -1 4 -2 2 2 -1 4 -2 -2 2 -1 4 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 | 0 0 4 3 0 0 0 4 3 0 0 0 0 0 0 0 0 0 0 0 | 10 0 - 6 0
0 10 - 8 5
0 10 - 8 5
0 10 - 8 5
0 5 - 4 10
0 5 - 4 10
0 5 - 4 10
0 1 4 - 2 2
- 1 4 - 2 2
- 2 2 4 4
- 2 2 4 4
Model M84
0 1 1 1 1 | 2 1 -1 1
1 2 1 -1
1 1 2 -2
1 -1 2 2
1 -1 -2 2
Model M79
5 0 4 0
5 3 -5
4 3 5 -3
0 -5 3 5
Model M85 | 2 0 1 1 1 0 2 -1 1 1 1 2 -2 1 1 1 2 -2 1 1 1 2 -2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 2 1 1 2 1 | 4 1 2 -1
1 4 2 -4
2 2 4 -2
-1 -4 -2 4
Model MB1
2 -2 -1 -2
-2 2 1 2
-1 1 2 1 2 | Model M76
5 0 3-3
0 5-4 4
3-5 5-5
-2 4-5 5
Model M82
2 0 0 0
0 2 -2 1
0 -2 2-1 | | 8 0 4 0 8 4 8 4 8 9 3 - 3 - 7 - 6 6 12 9 - 2 8 81 Model M37 10 0 6 0 10 4 6 4 10 - 3 - 8 - 5 | 8 -3 -6 -4 -6 -6 -6 -4 -2 -6 -6 -6 -4 -2 -6 -6 -4 -2 -6 -6 -4 -2 -6 -6 -4 -2 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 | Model M39 Model M39 Model M39 Model M39 | 10.4-5-8 4 10.2 5 2 10.1 8 5 110 Model M34 4 10.3 2 3 1 4 2 2 2 2 4 Model M40 Model M46 | 10 -4 -8 -5 -4 10 2 8 -6 -4 10 2 8 -6 -4 10 2 8 -6 8 4 10 4 -6 8 4 10 4 10 -5 8 4 10 -5 8 4 10 -5 8 4 10 -5 8 -5 8 -5 8 -5 8 -5 8 -5 8 -5 8 -5 | # 0.2.2
0 # 1-1
0 # 2-1 40
0 - 2-1 0 4
Model M36 | 0 0 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10 0 -6 0
0 10 -8 5
0 10 -8 5
8 -10 -4
0 5 -4 10
Model M78
4-1 2-2
1 4 -2 2-2 4 4
2 2 2 4 4
Model M84
1 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1 | 2 1-1 1 1 2 1-1 1 1 2 1-1 1 1 2 1-1 1 1 2 1 2 | 2 0 1 1 1 0 2 -1 1 1 1 2 -2 1 1 1 2 -2 1 1 1 2 -2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 2 1 1 2 1 | 4 1 2 -1
1 4 2 -4
2 2 4 -2
-1 -4 -2 4
Model MB1
2 -2 -1 -2
-2 2 1 2
-1 1 2 1 2 | Model M76
5 0 3-3
0 5-4 4
3-5 5-5
-2 4-5 5
Model M82
2 0 0 0
0 2 -2 1
0 -2 2-1 | | 8 0 4 4 0 8 4 4 4 5 5 6 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 | 3 8 3 64 6 8 6 6 4 2 8 6 6 8 7 6 4 2 8 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 | Model M45 | Model M40 Model M40-21 M60-21 M60-2 | 10.4.8.4.10.2.8 4.10.2.8 8.2.10.4 8.2.10.4 Model M35 4.0.2.3 0.4.3.2.0.4 Model M41 12.3.6.8 12.9.6 6.6.912.8 6.6.912.8 10.4.10.4
10.4.10.4 10.4.10 | 4 0 2 2 2 4 4 1 2 2 2 4 4 1 2 2 2 4 4 1 2 2 2 4 4 1 2 2 2 4 4 4 0 2 0 0 0 1 4 4 0 4 0 0 0 0 4 4 0 4 0 0 0 0 | 0 0 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10 0 -6 0
0 10 -8 5
0 10 -8 5
8 -10 -4
0 5 -4 10
Model M78
4-1 2-2
1 4 -2 2-2 4 4
2 2 2 4 4
Model M84
1 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1 | 2 1-1 1 1 2 1-1 1 1 2 1-1 1 1 2 1-1 1 1 2 1 2 | 2 0 1 1 1 0 2 -1 1 1 1 2 -2 1 1 1 2 -2 1 1 1 2 -2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 2 1 1 2 1 | 4 1 2 -1
1 4 2 -4
2 2 4 -2
-1 -4 -2 4
Model MB1
2 -2 -1 -2
-2 2 1 2
-1 1 2 1 2 | Model M76
5 0 3 -3
0 5 -4 4
3 -5 5 5
2 4 -5 5
Model M82
2 0 0 0
0 2 -2 1
0 -2 2 -1 | | 8 0 4 4 0 8 4 4 4 8 4 9 3 7 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Model M32 Model M38 Model M38 Model M44 Model M48 Model M48 Model M44 Model M44 Model M48 | Model M39 Model M39 Model M403 0 403 0 403 0 404 0 232 Model M45 0 402 0 402 2 404 | Model M46 Model M40 | 10 4 4 2 4 10 2 8 10 2 8 10 | 4 0 2 2 2 4 4 1 2 2 2 4 4 1 2 2 2 4 4 1 2 2 2 4 4 1 2 2 2 4 4 4 0 2 0 0 0 1 4 4 0 4 0 0 0 0 4 4 0 4 0 0 0 0 | 0 0 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10 0 -6 0
0 10 -8 5
0 10 -8 5
8 -10 -4
0 5 -4 10
Model M78
4-1 2-2
1 4 -2 2-2 4 4
2 2 2 4 4
Model M84
1 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1 | 2 1-1 1 1 2 1-1 1 1 2 1-1 1 1 2 1-1 1 1 2 1 2 | 2 0 1 1 1 0 2 -1 1 1 1 2 -2 1 1 1 2 -2 1 1 1 2 -2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 2 1 1 2 1 | 4 1 2 -1
1 4 2 -4
2 2 4 -2
-1 -4 -2 4
Model MB1
2 -2 -1 -2
-2 2 1 2
-1 1 2 1 2 | Model M76
5 0 3 -3
0 5 -4 4
3 -5 5 5
2 4 -5 5
Model M82
2 0 0 0
0 2 -2 1
0 -2 2 -1 | Petr Šimeček. Gaussian representation of independence models over four random variables. In *COMPSTAT conference*, 2006. ## Model M85 1 a b c $$a = \frac{3}{632836}\sqrt{1107463}$$, a 1 d e $b = 10c = \frac{100}{158209}\sqrt{1107463}$ b d 1 f c e f 1 $d = 10e = \frac{3}{4}$, $f = \frac{1}{10}$ ## Šimeček's Question Does every non-empty Gaussian CI model contain a rational point? #### Model M85 | 1 | а | b | С | $a = \frac{3}{632836} \sqrt{1107463},$ | |---|---|---|---|---| | a | 1 | d | е | $b = 10c = \frac{100}{158209} \sqrt{1107463}$ | | b | d | 1 | f | 158209 | | С | е | f | 1 | $d = 10e = \frac{3}{4}, f = \frac{1}{10}$ | | | | | | 4,3 10 | Where: $$\begin{pmatrix} 1 & -1/17 & -49/51 & -7/17 \\ -1/17 & 1 & 1/3 & 1/7 \\ -49/51 & 1/3 & 1 & 3/7 \\ -7/17 & 1/7 & 3/7 & 1 \end{pmatrix}$$ # **Complexity bounds** Let $f_1, \ldots, f_r \in \mathbb{Z}[t_1, \ldots, t_k]$ be integer polynomials in finitely many variables. We consider a system of polynomial constraints " $f_i \bowtie 0$ " where $\bowtie \in \{=, \neq, <, \leq, \geq, >\}$. ## Theorem (Tarski's transfer principle) If a polynomial system $\{f_i \bowtie 0\}$ has a solution over \mathbb{R} , then it has a solution in a finite real extension of \mathbb{Q} . ## Theorem (Real Nullstellensatz) A polynomial F vanishes on the semialgebraic set $\mathcal{K} = \{f_i \bowtie 0\}$ if and only if $F \in \sqrt[\mathbb{R}]{\mathcal{I}(f_i \bowtie 0)}$. The ideal $\mathcal{I}(f_i \bowtie 0)$, its real radical and the membership of F can be computed. Keyword for this decision problem: "existential theory of the reals". ### Main results #### Theorem Let $d
\ge 1$ and $\mathbb{Q}^{(d)}$ the field generated by all real algebraic numbers of degree at most d. For every d there exists a non-empty Gaussian CI model which has no $\mathbb{Q}^{(d)}$ -rational point. #### Theorem For every system of polynomials defining a semialgebraic set $\mathcal{K} = \{f_i \bowtie 0\}$ there exists a Gaussian CI model which is inhabited over \mathbb{R} if and only if \mathcal{K} is non-empty. Moreover, the description of this model is polynomially-sized in the description of \mathcal{K} . # **Breakout riddle** # **Algebra** ⊆ **Synthetic geometry** Point and line configuration for the equation $x^2 - 2 = 0$. The configuration is specified by incidences between points and lines and also the parallelities of lines. It is realizable over $\mathbb{Q}(\sqrt{2})$ but not over \mathbb{Q} . ## **Von Staudt constructions** #### Lemma The evaluation of integer polynomials can be encoded with incidence geometry. ## The cube root of 4 # Incidence relations as conditional independence Suppose $E = \{x, y, z\}$ and Σ_E is the identity matrix. $$\Sigma[ij|E] = \Sigma[E] \left(\Sigma_{ij} - \Sigma_{i,E} \Sigma_{E}^{-1} \Sigma_{E,j} \right) \tag{4}$$ $$\begin{split} & \Sigma[ij|E] = 0 \iff \Sigma_{ij} = \langle \Sigma_{i,E}, \Sigma_{j,E} \rangle \\ & \Sigma[ij|] = 0 \iff \Sigma_{ij} = 0 \end{split} \iff \Sigma_{i,E} \perp \Sigma_{j,E}$$ $p = \sum_{i,E} = [p_x : p_y : p_z]$ and $\ell = \sum_{j,E} = [\ell_x : \ell_y : \ell_z]$ are the *homogeneous coordinates* of a point and a line in the projective plane with $p \in \ell^{\perp}$. #### Lemma Incidence geometry can be encoded in CI constraints. # Condensed almost-principal minor $$\Sigma[ij|xyz] = x_{ij}x_{xx}x_{yy}x_{zz} + x_{iz}x_{jz}\frac{x_{2y}^{2} - x_{iz}x_{jy}x_{xy}x_{xz} - x_{iy}x_{jz}x_{xy}x_{xz} + x_{iy}x_{jy}\frac{x_{2z}^{2}}{x_{xz}}x_{yy} + x_{iz}x_{jx}x_{xy}x_{yz} + x_{ix}x_{jz}x_{xz}x_{yy} - x_{ij}x_{xz}^{2}x_{yy}$$ $$+ x_{iz}x_{jy}x_{xx}x_{yz} + x_{iy}x_{jz}x_{xx}x_{yz} - x_{iz}x_{jx}x_{xy}x_{yz} - x_{ix}x_{jz}x_{xy}x_{yz}$$ $$- x_{iy}x_{jx}x_{xz}x_{yz} - x_{ix}x_{jy}x_{xz}x_{yz} + 2x_{ij}x_{xy}x_{xz}x_{yz} + x_{ix}x_{jx}x_{yz}^{2}$$ $$- x_{ij}x_{xx}x_{yz}^{2} - x_{iy}x_{jy}x_{xx}x_{zz} + x_{iy}x_{jx}x_{xy}x_{zz} + x_{ix}x_{jy}x_{xy}x_{zz}$$ $$- x_{ij}x_{xy}^{2}x_{zz} - x_{ix}x_{jx}x_{yy}x_{zz}$$ $$= x_{ij} - \sum_{k=x,y,z} x_{ik}x_{jk} = x_{ij} - \langle p_{i}, \ell_{j} \rangle.$$ # Polynomial evaluation as conditional independence | | p_1 | | p_n | I_1 | | I_m | × | У | z | |-------|------------------------------|---------------------------|------------------------|-------------------------------|-------------------------|-------------------------------|----------------|------------|------------| | p_1 | p_1^* | | $\langle p,p' \rangle$ | | | | p_1^{\times} | $ ho_1^y$ | p_1^z | | ÷ | | ٠. | | | $\langle p,\ell angle$ | | | ÷ | | | p_n | $\langle p',p \rangle$ | | p_n^* | | | | p_n^{\times} | p_n^y | p_n^z | | I_1 | | | | ℓ_1^* | | $\langle \ell, \ell' \rangle$ | ℓ_1^{x} | ℓ_1^y | ℓ_1^z | | : | | $\langle \ell, p \rangle$ | | | ٠. | | | ÷ | | | I_m | | | | $\langle \ell', \ell \rangle$ | | $\ell_{m m}^*$ | ℓ_{m}^{x} | ℓ_m^y | ℓ_m^z | | × | $p_1^{\scriptscriptstyle X}$ | | p_n^{x} | ℓ_1^{x} | | ℓ_{m}^{\times} | 1 | 0 | 0 | | У | p_1^y | ••• | p_n^y | ℓ_1^y | ••• | ℓ_{m}^{y} | 0 | 1 | 0 | | z | p_1^z | | p_n^z | ℓ_1^z | | ℓ_{m}^{z} | 0 | 0 | 1 / | #### Theorem To every polynomial system $\{f_i \bowtie 0\}$ there is a set of CI constraints which has a model over a field \mathbb{K}/\mathbb{Q} if and only if the polynomial system has a solution in \mathbb{K} . ## **QED** #### **Theorem** Let $d \ge 1$ and $\mathbb{Q}^{(d)}$ the field generated by all real algebraic numbers of degree at most d. For every d there exists a non-empty Gaussian CI model which has no $\mathbb{Q}^{(d)}$ -rational point. #### Theorem For every system of polynomials defining a semialgebraic set $\mathcal{K} = \{f_i \bowtie 0\}$ there exists a Gaussian CI model which is inhabited over \mathbb{R} if and only if \mathcal{K} is non-empty. Moreover, the description of this model is polynomially-sized in the description of \mathcal{K} . Question: What is the smallest $n \ge 5$ for which there is an n-variate Gaussian CI model without rational point? Tobias Boege. Incidence geometry in the projective plane via almost-principal minors of symmetric matrices, 2021. arXiv:2103.02589. Jürgen Bokowski and Bernd Sturmfels. Computational synthetic geometry, volume 1355 of Lecture Notes in Mathematics. Springer, 1989. Jürgen Richter-Gebert. Perspectives on projective geometry. A guided tour through real and complex geometry. Springer, 2011. Petr Šimeček. Gaussian representation of independence models over four random variables. In *COMPSTAT conference*, 2006. # $\bowtie \in \{=\}$ suffices In the real numbers, the solvability of a system of equations is just as hard as equations, inequations and inequalities if we introduce a new variable y: - $f(x) \neq 0 \Leftrightarrow \exists y : yf(x) 1 = 0$ - $f(x) \ge 0 \iff \exists y : f(x) y^2 = 0$ - $f(x) > 0 \iff \exists y : y^2 f(x) 1 = 0$ (f(x)) has a multiplicative inverse) (f(x)) is a square, i.e. non-negative) (f(x)) has an inverse which is a square)