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Conditional independence X 1LY | Z

“When does knowing Z make X irrelevant for Y?"

Example: Two independent fair coins ¢; and ¢, are wired to a bell b which rings
if and only if ¢; = .

» C1 Lo

» ~(aallelb)...

Question: When can we conclude from some independences other independences?
E.g., is it possible that ¢; 1L b?



Graphical models
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Gaussian conditional independence

Assume & = (& : i€ N) are jointly Gaussian with covariance matrix X € PDy,.

Definition
The polynomial X[K] = det ¥k k is a principal minor of ¥ and ¥[ij|K] = det ¥k jk
is an almost-principal minor.

» Y is PD if and only if £[K] >0 for all K ¢ N.
» [& L& | €x] holds if and only if X[ij| K] =0.
» E[¢] = p is irrelevant.



Very special polynomials

Y[ij|]=xj
Y[ij | k] = XijXuk = XikXjk
Y[ij| k] = - + + X2 = XiXi
ij Xij XKk X = Xit X1 Xick X,/XJka/ XikeXji Xkl = XijXjg) = XikXjk Xi1
Y[ij| kIm] = XIJkaXI/Xmm + XimXjmXe) — XimXj1XkI Xk = Xii XXkl Xk +

Xi/Xj/ka = XimXjmXkkXll + XimXjkXkmX|l + XikXjmXkmX|| —
XinEmX// + XimXjI Xkk Xim + XilXjmXkk Xim — XimXjk Xk XIm —
Xik XjmXki Xim = XilXjk XkmXim = Xik XjiXkmXim + 2XijXi| XkmXim +
XikakX/%n - Xinka/Qm = XiIXjIXkkXmm T Xi|XjkXkiXmm +

2
Xik XjI XkIXmm — Xij X Xmm — XikXjkXi|Xmm



Gaussian Cl models

Definition
A Cl constraint is a Cl statement [§; 1L &; | k] or its negation —[&; L &; | €k ].
The model of a set of Cl constraints is the set of all PD matrices which satisfy them.

Figure: Model of X[12]3] = a— bc = 0 in the space of 3 x 3 correlation matrices.
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Basic questions

» How hard is it to decide if the model specification is inconsistent?
» How hard is it to certify consistency by showing a point in the model?

» What is the geometric structure of the models?

What is the model of [X L Y [A[X L Z|Y |A=[XLY |Z]?
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Models and inference

Consider two sets of Cl statements P and Q:

AP =\VQ Pu-Q

is not valid has a point

Reasoning about Cl statements in normally distributed random variables is
the same as reasoning about the vanishing of very special kinds of determinants
on very special kinds of varieties inside the positive definite matrices.
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Normal form for proofs and refutations

Let f; € Z[t1,. .., tx]| be integer polynomials in finitely many variables.
Theorem (Tarski's transfer principle)

If a polynomial system {f; m; 0}, where w; € {=,4,<,<,>,>}, has a solution over R,
then it has a solution in a finite real extension of Q.



Normal form for proofs and refutations

Let f; € Z[t1,. .., tx]| be integer polynomials in finitely many variables.

Theorem (Tarski's transfer principle)

If a polynomial system {f; m; 0}, where w; € {=,4,<,<,>,>}, has a solution over R,
then it has a solution in a finite real extension of Q.

- If AP =V Q is false, there exists a counterexample matrix ¥ with algebraic entries.

[12]] A [12]3] = [13]] is false and a counterexample is

1 0 1
0 1 0
120 1



Normal form for proofs and refutations

Let fi,gj, he € Z[t1,. .., tx] be integer polynomials in finitely many variables.

Theorem (Positivstellensatz)

A polynomial system {f; =0, gj >0, hi # 0} is infeasible if and only if there exist
f eideal(f;), g € cone(g;) and h € monoid(hx) such that g + h> = f.



Normal form for proofs and refutations

Let fi,gj, he € Z[t1,. .., tx] be integer polynomials in finitely many variables.

Theorem (Positivstellensatz)

A polynomial system {f; =0, gj >0, hi # 0} is infeasible if and only if there exist
f eideal(f;), g € cone(g;) and h € monoid(hx) such that g + h> = f.

- If AP =V Q is true, there exists an algebraic proof for it with integer coefficients.
[12]]A[12]3] = [13]] v [23]] is true and a proof is the final polynomial

Y[13]]-£[23|] = £[3] - T[12]] - £[12|3].
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The following inference rule is valid for all positive definite 5 x 5 matrices:

[12]]A[14|5]A[23|5]A[35|1]A[45]2] A[15]23]A[34] 12] A[24|135] = [25]]v[34]].



Computer algebra proves laws of probabilistic reasoning

The following inference rule is valid for all positive definite 5 x 5 matrices:

[12]]A[14|5]A[23|5]A[35|1]A[45]2] A[15]23]A[34] 12] A[24|135] = [25]]v[34]].

[25[][34]]- [1][2][3][15] =

( cd?egr + bd?fgr — ad?grh — 2cd®e®i — 2bd?efi — 2pdfgri + 2ad?ehi + 2pdefi® - 2pdqhi? + 2pcqi® +
2pdqrij — 2pbqi%j — pcegrt + pbfgrt + pagrht + 2pce?it — 2pcqrit + 2pbghit — 2paehit) [12]]+
(pdqer + pbagr — 2pbqei) -[14|5] - (pcdqr + pfar — 2pbcgi + 2pb2qj — 2p2qrj> -[23|5] +

(cdqgr — 2cdqei + 2pqghi — 2pqfi® - pagrj + 2pqeij — 2pe2ft + 2qurt) [35|1] +
(pd2er — 2pbdei + pPgri + 2pb2et — 2p2ert> -[45]|2] - (2pdf/ - 2pbft) -[15]23] -
(o2er - 2d%ei - pgrt + 2peit) - [34 | 12] - 2pqi - [24]135].



Computer algebra proves laws of probabilistic reasoning

=e
I

= QQlp,a,b,c,d, q,e,f,g, r,h,i, s,j, tl;
genericSymmetricMatrix(R,p,5);
I = ideal(
det X_{0}"{1}, det X_{0,3}°{2,3}, det X_{0,4}"{3,4},
det X_{1,4}"{2,4}, det X_{2,0}°{4,0}, det X_{3,1}7{4,1},
det X_{0,1,2}°{4,1,2}, det X_{2,0,1}"{3,0,1%},
det X_{1,0,2,4}°{3,0,2,4}
)3
U = grh¥p*rqxr*(pxt-d~2); -- [25]][34]]-[1][2][3][15] € monoid(V)
U Y% I -->0, meaning monoid(V)nideal(V) # @ in Q[X]
-- Get a proof that U s wn I:
G = gens I; -- the equations generating ideal())
H=U// G; —- linear combinators for U from G
U == GxH --> true

>~
1



Consistency checking is hard

The complexity class 3R contains all decision problems which can be reduced in
polynomial time to the feasibility of a semialgebraic set:

» polynomial optimization

» computational geometry

» algebraic statistics . ..



Consistency checking is hard

The complexity class 3R contains all decision problems which can be reduced in
polynomial time to the feasibility of a semialgebraic set:

» polynomial optimization

» computational geometry

» algebraic statistics . ..

Theorem

The problem of deciding whether a general Cl model is non-empty is complete for R.

(Graphical models are always consistent.)
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Certification of consistency

Gaussian representation of independence models over four random variables

3

Petr Sime&ek.
COMPSTAT conference. 2006

In
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Simetek’s Question (2006)
Does every non-empty Gaussian Cl model contain a rational point?

Or: can every wrong inference rule be refuted over Q?



Consistency certification is hard

Simetek’s Question (2006)
Does every non-empty Gaussian Cl model contain a rational point?

Or: can every wrong inference rule be refuted over Q?

Model M85 Wwhere: 3
a= - V1107463,

1abc = 63283 1 -1/17 -49/51 -7/17
alde ,_ ;.- '9 /556 -1/17 1 1/3 1/7
bdi1f 158209 -49/51  1/3 1 3/7
cef 1 23 !

(I:lUc'—4,_f':E —7/]_7 ]_/7 3/7 1



Consistency certification is hard

Simetek’s Question (2006)
Does every non-empty Gaussian Cl model contain a rational point?

Or: can every wrong inference rule be refuted over Q?

Theorem

For every finite real extension K of Q there exists a Cl model M such that
MnPDN(K) # @ but M nPDy(L) =@ for all proper subfields L ¢ K.

(Graphical models always have rational points.)



Model topology can be bad

An oriented Cl model is specified by sign constraints on partial correlations.

Theorem

For every primary basic semialgebraic set Z there exists an oriented Cl model M
which is homotopy-equivalent to Z.

(Graphical models are always contractible.)




Universality theorems

von Staudt 1857 (*)

Integer Incidence Conditional
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Universality theorems

von Staudt 1857 (*)

Integer Incidence Conditional
polynomials geometry independence
T —

Realization spaces of rank-3 matroids

v

v

Realization spaces of 4-polytopes

v

Nash equilibria of 3-person games

v

Gaussian Cl models with conditioning sets of size up to 3 ...
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Universality theorems: Background

von Staudt 1857 (*)

Integer Incidence Conditional
polynomials geometry independence

’
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Theorem

To every polynomial system {f; x 0} there is a set of Cl constraints which has a model
over a field K/Q if and only if the polynomial system has a solution in K.



Very special polynomials

Y[ij|] = xjj = impose Xk = Xkm = Xim = 0 on a correlation matrix, then:
Y [ij| kim] = x;; s X2 X X — XX T XX X2
y | m] = XijXkk X1 Xmm + XimXjmXj) = XimXji Xkl Xkm = Xil XjmXkIXkm + Xil Xji Xjcm
2
= XimXimXkkXIl T XimXjkXkmX|l + Xik XjmXkmXil — XijXimXil
+ XimXjIXkk XIm + XilXjmXkkXIm — XimXjk XkIXIm — Xik XjmXkIXIm
2
= XilXjk XkmXim — XikXji XkmXIm + 2Xinle/<mX/m + Xik XjkXim
2
= Xjj XkkXjm = XitXj1 XkkXmm + XitXjkXkIXmm + XikXjI XkIXmm

2
= XX Xmm = XikXjkX11Xmm

Xik Xjk
= Xjj — Z XikXjk = Xij — (;f:r;), Xjl .

k=k.I,m m

The rest is 19t century projective geometry. Keyword: von Staudt constructions.



Covariance matrix simulating a projective plane

P1

P1 Pn Iy Im X y z
pr (p.p") pr Py pi
{p,€) 3
(r',p) Pn Py Pn P;
0 (0.0) | o 4 G
(¢, p) :
(', o) o e E
Py Py T b x* 0 0
Py Pn o s 0 y* 0
pi o 1 158 0 0 =z
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