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Gaussian DAG models

I A linear structural equation model defines random
variables X recursively via a directed acyclic graph
G = (V ,E) and Gaussian noise:

Xj =
∑

i∈pa(j)
λijXi + εj , εj ∼ N (0, ωj).
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I The vector X is again Gaussian with mean zero. Since G is acyclic, we can solve
for the covariance matrix Σ:

Σ = (I − Λ)−TΩ(I − Λ)−1, with Λ ∈ RE and Ω = diag(ω).

I All such matrices form the model M(G).



1 / 9

Gaussian DAG models

I A linear structural equation model defines random
variables X recursively via a directed acyclic graph
G = (V ,E) and Gaussian noise:

Xj =
∑

i∈pa(j)
λijXi + εj , εj ∼ N (0, ωj).

1 3

45

2

I The vector X is again Gaussian with mean zero. Since G is acyclic, we can solve
for the covariance matrix Σ:

Σ = (I − Λ)−TΩ(I − Λ)−1, with Λ ∈ RE and Ω = diag(ω).

I All such matrices form the model M(G).



1 / 9

Gaussian DAG models

I A linear structural equation model defines random
variables X recursively via a directed acyclic graph
G = (V ,E) and Gaussian noise:

Xj =
∑

i∈pa(j)
λijXi + εj , εj ∼ N (0, ωj).

1 3

45

2

I The vector X is again Gaussian with mean zero. Since G is acyclic, we can solve
for the covariance matrix Σ:

Σ = (I − Λ)−TΩ(I − Λ)−1, with Λ ∈ RE and Ω = diag(ω).

I All such matrices form the model M(G).



2 / 9

Properties of DAG models

I M(G) is an irreducible variety and smooth submanifold of PDV .

I The parameters (ω,Λ) are rationally identifiable.

I The model is equivalently given by the Markov properties of the DAG, e.g.,

M(G) = {Σ ∈ PDV : i ⊥⊥ j | pa(j) whenever ij 6∈ E}.

I Almost all distributions in M(G) are faithful to G, i.e., do not satisfy more
CI statements than the global Markov property.

I Model equivalence M(G) = M(H) is combinatorially characterized:
if and only if G and H have the same skeleton and v-structures.
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Colored Gaussian DAG models

I In a colored Gaussian DAG model, the vertices and
edges of G are partitioned into color classes via a
coloring function c : V t E → C .

I The parametrization Σ = (I − Λ)−TΩ(I − Λ)−1 stays
the same but we reduce the parameter space: ωi = ωj
if c(i) = c(j) and λij = λkl if c(ij) = c(kl).

I This restricts the parameters to a linear subspace .
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I Vertex-only colorings correspond to partial homoscedasticity [WD23].

I Coloring reduces Markov-equivalence classes which eases causal discovery.
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Parameter identifiability revisited

I It follows from the recursive factorization and some linear algebra that

ωj =
|Σj∪pa(j)|
|Σpa(j)|

, λij =
|Σij|pa(j)\i |
|Σpa(j)|

.

I Study the rational functions

ωj|A(Σ) =
|Σj∪A|
|ΣA|

, λij|A(Σ) =
|Σij|A\i |
|ΣA|

.

I A set A is identifying for a vertex j resp. edge ij if

ωj = ωj|A(Σ) resp. λij = λij|A(Σ)

for all Σ ∈ M(G).
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Parameter identifiability revisited

Theorem
Let G = (V ,E) be a DAG. Then:

I ωj = ωj|A(Σ) for every Σ ∈ M(G) if and only if pa(j) ⊆ A ⊆ V \ de(j). [WD23]

I If ij 6∈ E, then λij = 0 = λij|A(Σ) for every Σ ∈ M(G) if and only if A\i d-separates
i and j in G. [Folklore]

I If ij ∈ E, then λij = λij|A(Σ) for every Σ ∈ M(G) if and only if i ∈ A ⊆ V \ de(j)
and A \ i d-separates i and j in the graph Gij which arises from G by deleting the
edge ij and the vertices de(j).

I The polynomials vcr(i |A, j|B) = |ΣA||ΣB |(ωi|A − ωj|B) resp.
ecr(ij|A, kl |B) = |ΣA||ΣB |(λij|A − λkl|B) vanish on the model M(G, c)
whenever c(i) = c(j) resp. c(ij) = c(kl) and A and B are identifying.
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Model geometry

Theorem
For every colored DAG (G, c) the model M(G, c) is an irreducible variety and
a smooth submanifold of PDV . It is diffeomorphic to an open ball of dimension
vc + ec (the number of vertex- and edge-color classes).

Theorem
The vanishing ideal PG,c of M(G, c) is (IG + Ic) : SG where:
I IG = 〈|Σij|pa(j)| : ij 6∈ E〉 is the conditional independence ideal of G,

I Ic = 〈vcr(i |pa(i), j|pa(j)) : c(i) = c(j)〉+ 〈ecr(ij|pa(j), kl |pa(l)) : c(ij) = c(kl)〉
is the coloring ideal of G,

I SG = {
∏

j∈V |Σpa(j)|kj : kj ∈ N} is the monoid of parental principal minors.

I Resolves the colored generalization of a conjecture of Sullivant; see also [RP14].
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Implicitization up to saturation

Lemma
Let R ,R ′ be rings, S ⊆ R multiplicatively closed, and:
I maps φ : R → R ′ and ψ : R ′ → S−1R with ψ ◦ φ = idR ,
I for a prime ideal I ′ = 〈f1, . . . , fk〉, write ψ(fi) = gi/hi and set J = 〈gi〉.

If I := φ−1(I ′) ∈ Spec(S−1R/J), then I = J : S.

I For example, φ = parametrization of M(Kn), ψ = parameter identification map
and I ′ = linear equations on parameters from missing edges and color classes.

I The lemma computes the vanishing ideal up to a saturation of rationally
identifiable models with additional equation constraints

→ colored undirected
graphical models. What else?

I Knowing a parametrization and generators for the vanishing ideal up to saturation
is sufficient in practice for model distinguishability.

I Conceivable to extend to inequalities.
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Faithfulness

Fix a colored DAG (G, c) and Σ ∈ M(G, c).

I Σ is faithful to G if it satisfies no more CI statements than the d-separations in G.

I Σ is faithful to c if it satisfies no more vcr or ecr relations than those from c.

Theorem ([WD23; STD10])

I Generic Σ ∈ M(G, c) is faithful to c.

I Generic Σ ∈ M(G, c) is faithful to G if c is a vertex-coloring or an edge-coloring.

I The example on the right colors vertices and edges.
The generic matrix in the model satisfies 1 ⊥⊥ 4 | 5.
No faithful distribution!

2 5

4

1

3
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Structure identifiability

Theorem ([WD23])
If (G, c) and (H, c) are vertex-colored DAGs, then M(G, c) = M(H, c) if and only if
G and H are Markov-equivalent and paG(j) = paH(j) for all j ∈ V with |c−1(j)| ≥ 2.

Now let (G, c) and (H, d) be edge-colored DAGs with M(G, c) = M(H, d).

I G and H must have the same skeleton and v-structures because of faithfulness.
I (G, c) and (H, d) are similar if whenever c(ij) = c(kl) in G, then

ij, kl ∈ EH and d(ij) = d(kl). (Colored edges cannot flip.)

Theorem
If (G, c) and (H, d) are edge-colored DAGs, then M(G, c) = M(H, d) implies that
(G, c) and (H, d) are similar. In particular, if every edge is in a color class of size at
least 2, edge directions are uniquely determined.
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