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Combinatorial geometries

▶ Matroids arise as a common combinatorial abstraction of independence
in linear algebra and graph theory.

▶ But appear also in numerous other contexts such as algebraic or stochastic
independence, game theory, rigidity theory, cryptography . . .

▶ Example: Let (v1, . . . , vn) be elements of a vector space. The subsets I ⊆ [n]
such that (vi : i ∈ I) are linearly independent form a matroid.

▶ Example: Let G = (V ,E) be an undirected graph. The sets I ⊆ E which do not
contain a cycle form a matroid.
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Matroid cryptomorphisms I: Independent sets

A matroid on ground set N is specified by its collection of independent sets
I ⊆ 2N satisfying:
▶ ∅ ∈ I,
▶ J ⊆ I ∈ I implies J ∈ I,
▶ if I, J ∈ I with |I| > |J|, then there exists x ∈ I \ J such that J ∪ { x } ∈ I.

The independent sets of matroids are special (pure) simplicial complexes:

n 1 2 3 4 5 6
Simplicial complexes 1 2 5 20 180 16 143

Matroids 1 2 4 9 21 60

Nelson (2016): Almost all matroids are not linearly representable.
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Example

1

2
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4 5

6

Independent sets:

▶ { 1, 4, 6 }
▶ { 2, 4, 6 } . . .

Ranks:
▶ r({ 1, 4, 6 }) = 3
▶ r({ 1, 3, 4, 6 }) = 3 < 4 . . .

Closures:
▶ c({ 1, 4, 6 }) = { 1, 2, 3, 4, 5, 6 }
▶ c({ 1, 4 }) = { 1, 2, 4 } . . .
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Matroid cryptomorphisms II: Rank function

A matroid on ground set N is specified by its rank function r : 2N → ℤ satisfying:
▶ r(∅) = 0,
▶ r(A) ≤ r(B) for A ⊆ B,
▶ r(A) + r(B) ≥ r(A ∪ B) + r(A ∩ B),
▶ r(A) ≤ |A|.

Equivalence of independent sets and rank:
▶ A set I is independent if and only if r(I) = |I|.
▶ The rank of any set A ⊆ N is max { |I| : A ⊇ I ∈ I }.
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Matroid cryptomorphisms III: Closure operator

A matroid on ground set N is specified by its closure operator c : 2N → 2N satisfying:
▶ A ⊆ c(A),
▶ c(A) = c(c(A)),
▶ c(A) ⊆ c(B) for A ⊆ B,
▶ if x ∈ c(A ∪ { y }) \ c(A) then y ∈ c(A ∪ { x }) \ c(A).

The closed sets are called flats and they form a lattice.

Equivalence of rank and closure operator:
▶ A is closed if and only if r(A ∪ { x }) > r(A) for all x ∉ A.
▶ The rank of any set A ⊆ N is its rank in the lattice of flats.
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Some terminology

▶ x ∈ N is a loop if r({ x }) = 0.
▶ x ≠ y ∈ N are parallel if they are not loops and r({ x,y }) = 1.
▶ A matroid is simple if it has neither loops or parallel elements.

Given a matroid M on N with rank function r and an element x ∈ N

we define two new matroids on N \ { x }:
▶ The deletion of x defines M \ x whose rank function is the restriction r|2N\{x } .
▶ The contraction of x defines M / x with rank function r(A ∪ { x }) − r({ x }).
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Chromatic polynomial of a graph

The chromatic polynomial of a graph G = (V ,E) is

χG(q) B # proper colorings of G with q colors.

This is a polynomial because (provided x is neither a loop nor a coloop)

χG(q) = χG\x(q) − χG/x(q),
χG(q) = qn if |V | = n and E = ∅.
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Chromatic polynomial of a matroid

Chromatic (or characteristic) polynomial of a matroid: (See also: Tutte polynomial.)

χM(q) = χM\x(q) − χM/x(q)

=
∑
A⊆N

(−1)|A|qr(N)−r(A) C
r(N)∑
k=0

wkq
r(N)−k.

wk are the Whitney numbers of the first kind and they have alternating signs.

Teaser: Adiprasito-Huh-Katz: The sequence |wk | is log-concave and unimodal.
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