Matroids and chromatic polynomials

Tobias Boege

Max-Planck Institute for Mathematics in the Sciences, Leipzig

Geometry of Lorentzian polynomials day MPI-MiS Leipzig, 24 May 2022

Combinatorial geometries

- ► Matroids arise as a common combinatorial abstraction of independence in linear algebra and graph theory.
- ▶ But appear also in numerous other contexts such as algebraic or stochastic independence, game theory, rigidity theory, cryptography . . .

Combinatorial geometries

- ► Matroids arise as a common combinatorial abstraction of independence in linear algebra and graph theory.
- ▶ But appear also in numerous other contexts such as algebraic or stochastic independence, game theory, rigidity theory, cryptography . . .
- ▶ Example: Let $(v_1, ..., v_n)$ be elements of a vector space. The subsets $I \subseteq [n]$ such that $(v_i : i \in I)$ are linearly independent form a matroid.

Combinatorial geometries

- ► Matroids arise as a common combinatorial abstraction of independence in linear algebra and graph theory.
- ▶ But appear also in numerous other contexts such as algebraic or stochastic independence, game theory, rigidity theory, cryptography . . .
- ▶ Example: Let $(v_1, ..., v_n)$ be elements of a vector space. The subsets $I \subseteq [n]$ such that $(v_i : i \in I)$ are linearly independent form a matroid.
- ▶ Example: Let G = (V, E) be an undirected graph. The sets $I \subseteq E$ which do not contain a cycle form a matroid.

Matroid cryptomorphisms I: Independent sets

A matroid on ground set N is specified by its collection of independent sets $\mathfrak{I}\subseteq 2^N$ satisfying:

- $\blacktriangleright \emptyset \in \mathcal{I}$,
- ▶ $J \subseteq I \in \mathcal{I}$ implies $J \in \mathcal{I}$,
- ▶ if $I, J \in \mathcal{I}$ with |I| > |J|, then there exists $x \in I \setminus J$ such that $J \cup \{x\} \in \mathcal{I}$.

Matroid cryptomorphisms I: Independent sets

A matroid on ground set N is specified by its collection of independent sets $\mathfrak{I}\subseteq 2^N$ satisfying:

- $\blacktriangleright \emptyset \in \mathcal{I}$
- ▶ $J \subseteq I \in \mathcal{I}$ implies $J \in \mathcal{I}$,
- ▶ if $I, J \in \mathcal{I}$ with |I| > |J|, then there exists $x \in I \setminus J$ such that $J \cup \{x\} \in \mathcal{I}$.

The independent sets of matroids are special (pure) simplicial complexes:

n	1	2	3	4	5	6
Simplicial complexes	1	2	5	20	180	16 143
Matroids	1	2	4	9	21	60

Nelson (2016): Almost all matroids are not linearly representable.

Independent sets:

Independent sets:

► {1,4,6}

Independent sets:

► {1,4,6}

Independent sets:

► {1,4,6}

Independent sets:

- ► {1,4,6} ► {2,4,6}...

Matroid cryptomorphisms II: Rank function

A matroid on ground set N is specified by its rank function $r: 2^N \to \mathbb{Z}$ satisfying:

- $ightharpoonup r(\emptyset) = 0$
- ▶ $r(A) \le r(B)$ for $A \subseteq B$,
- $r(A) + r(B) \ge r(A \cup B) + r(A \cap B),$
- ▶ $r(A) \le |A|$.

Matroid cryptomorphisms II: Rank function

A matroid on ground set N is specified by its rank function $r: 2^N \to \mathbb{Z}$ satisfying:

- $ightharpoonup r(\emptyset) = 0$
- ▶ $r(A) \le r(B)$ for $A \subseteq B$,
- $r(A) + r(B) \ge r(A \cup B) + r(A \cap B),$
- ▶ $r(A) \le |A|$.

Equivalence of independent sets and rank:

- ▶ A set I is independent if and only if r(I) = |I|.
- ▶ The rank of any set $A \subseteq N$ is max $\{ |I| : A \supseteq I \in \mathcal{I} \}$.

Independent sets:

- ► {1,4,6}
- **▶** {2,4,6} ...

Ranks:

$$ightharpoonup r(\{1,4,6\}) = 3$$

Independent sets:

- **▶** {1,4,6}
- **▶** {2,4,6} ...

Ranks:

- $r(\{1,4,6\}) = 3$
- $ightharpoonup r(\{1,3,4,6\}) = 3 < 4 \dots$

Matroid cryptomorphisms III: Closure operator

A matroid on ground set N is specified by its closure operator $c: 2^N \to 2^N$ satisfying:

- $ightharpoonup A \subseteq c(A),$
- ightharpoonup c(A) = c(c(A)),
- ▶ $c(A) \subseteq c(B)$ for $A \subseteq B$,
- ▶ if $x \in c(A \cup \{y\}) \setminus c(A)$ then $y \in c(A \cup \{x\}) \setminus c(A)$.

The closed sets are called *flats* and they form a lattice.

Matroid cryptomorphisms III: Closure operator

A matroid on ground set N is specified by its closure operator $c: 2^N \to 2^N$ satisfying:

- $ightharpoonup A \subseteq c(A)$,
- ightharpoonup c(A) = c(c(A)),
- $ightharpoonup c(A) \subseteq c(B)$ for $A \subseteq B$,
- ▶ if $x \in c(A \cup \{y\}) \setminus c(A)$ then $y \in c(A \cup \{x\}) \setminus c(A)$.

The closed sets are called *flats* and they form a lattice.

Equivalence of rank and closure operator:

- ▶ A is closed if and only if $r(A \cup \{x\}) > r(A)$ for all $x \notin A$.
- ▶ The rank of any set $A \subseteq N$ is its rank in the lattice of flats.

Independent sets:

- **▶** {1,4,6}
- **▶** {2,4,6} ...

Ranks:

- $ightharpoonup r(\{1,4,6\}) = 3$
- $ightharpoonup r(\{1,3,4,6\}) = 3 < 4 \dots$

Closures:

 $ightharpoonup c(\{1,4,6\}) = \{1,2,3,4,5,6\}$

Independent sets:

- **▶** {1,4,6}
- **▶** {2,4,6} ...

Ranks:

- $ightharpoonup r(\{1,4,6\}) = 3$
- $ightharpoonup r(\{1,3,4,6\}) = 3 < 4 \dots$

Closures:

- $ightharpoonup c(\{1,4,6\}) = \{1,2,3,4,5,6\}$
- ► $c({1,4}) = {1,2,4} \dots$

Some terminology

- \blacktriangleright $x \in N$ is a loop if $r(\{x\}) = 0$.
- ▶ $x \neq y \in N$ are parallel if they are not loops and $r(\{x,y\}) = 1$.
- ▶ A matroid is simple if it has neither loops or parallel elements.

Some terminology

- \blacktriangleright $x \in N$ is a loop if $r(\{x\}) = 0$.
- ▶ $x \neq y \in N$ are parallel if they are not loops and $r(\{x,y\}) = 1$.
- ▶ A matroid is simple if it has neither loops or parallel elements.

Given a matroid M on N with rank function r and an element $x \in N$ we define two new matroids on $N \setminus \{x\}$:

- ▶ The deletion of x defines $M \setminus x$ whose rank function is the restriction $r|_{2^{N \setminus \{x\}}}$.
- ▶ The contraction of x defines M / x with rank function $r(A \cup \{x\}) r(\{x\})$.

Chromatic polynomial of a graph

The chromatic polynomial of a graph G = (V, E) is

 $\chi_G(q) \coloneqq \#$ proper colorings of G with q colors.

This is a polynomial because (provided x is neither a loop nor a coloop)

$$\begin{split} \chi_G(q) &= \chi_{G \setminus x}(q) - \chi_{G/x}(q), \\ \chi_G(q) &= q^n \text{ if } |V| = n \text{ and } E = \emptyset. \end{split}$$

Chromatic polynomial of a matroid

Chromatic (or characteristic) polynomial of a matroid: (See also: Tutte polynomial.)

$$\begin{split} \chi_M(q) &= \chi_{M \setminus x}(q) - \chi_{M/x}(q) \\ &= \sum_{A \subseteq N} (-1)^{|A|} q^{r(N) - r(A)} =: \sum_{k=0}^{r(N)} w_k q^{r(N) - k}. \end{split}$$

 w_k are the Whitney numbers of the first kind and they have alternating signs.

Teaser: Adiprasito-Huh-Katz: The sequence $|w_k|$ is log-concave and unimodal.

Further reading

- Karim Adiprasito, June Huh, and Eric Katz. "Hodge theory for combinatorial geometries". English. In: *Ann. Math. (2)* 188.2 (2018), pp. 381–452. ISSN: 0003-486X. DOI: 10.4007/annals.2018.188.2.1.
- Federico Ardila. "The geometry of matroids". English. In: *Notices Am. Math. Soc.* 65.8 (2018), pp. 902–908. ISSN: 0002-9920. DOI: 10.1090/noti1720.
- Dominic J. A. Welsh. *Matroid theory*. Vol. 8. London Mathematical Society Monographs. Academic Press, 1976.