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Entropy

Let X ∈ ∆(d) be a random variable taking finitely many values {1, . . . , d} with
non-negative probabilities p1, . . . , pd . Its Shannon entropy is

H(X ) :=
d∑

i=1

pi log(1/pi)
[
with 0 · log(1/0) := 0

]

▶ H is continuous on ∆(d) and analytic on the interior.

▶ A random vector X ∈ ∆(di : i ∈ N) is a random variable in ∆(
∏

i∈N di ),
so the definition of H extends to vectors.

▶ For a random vector X = (Xi : i ∈ N) we have 2N marginals
and we collect their entropies in an entropy profile hX : 2N → R.
▶ For example (X ,Y ) has entropy profile (0,H(X ),H(Y ),H(X ,Y )) ∈ R4.
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Entropy as information
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Figure: Entropy of a binary random variable X as a function of p = Pr[X = heads].
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Synthetic geometry for random variables

Entropy profile encodes qualitative information about the system of random variables:

▶ Subvector XI is functionally dependent on XK if and only if hX (I ∪K) = hX (K).

▶ Subvectors XI and XJ are conditionally independent given XK if and only if
hX (I ∪ K) + hX (J ∪ K) = hX (I ∪ J ∪ K) + hX (K).

Many applications deal with random vectors only through their entropy profiles:

▶ Graphical models in statistics and causality are defined by CI assumptions
(e.g., Bayesian networks and d-separation in graphs).

▶ Cryptographic protocols use FD and CI constraints to specify operation and
information-theoretic security (e.g., secret sharing).

▶ Quantities in information theory are defined by linear optimization over entropy
profiles with FD and CI constraints (e.g., common information).
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Example: Perfect secret sharing

▶ Given: participants N = {1, . . . , n} and a set of qualified subsets Q ⊆ 2N .

▶ Devise a scheme (a system of random variables) to distribute shares sp of a
randomly generated secret s to the participants such that

▶ sp is a function of s,

▶ s is a function of sA = (sp : p ∈ A) whenever A ∈ Q,

▶ s is independent of sB whenever B ̸∈ Q.

▶ The information ratio is σ(h) = 1/h(s)max {h(p) : p ∈ N}.

▶ The optimal information ratio σ(Q) = inf {σ(h) : h |= Q} can be determined by
linear optimization over the set of entropy profiles.
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The entropy region and information inequalities

Let H∗
N ⊆ R2N consist of all hX where X is an N-variate discrete random vector. H∗

N is
the image of

⋃∞
d1=1 · · ·

⋃∞
dn=1∆(d1, . . . , dn) under the transcendental map X 7→ hX .

Theorem

H∗
N is a convex cone of dimension 2N − 1. Furthermore relint(H∗

N) ⊆ H∗
N .

▶ Linear optimization is well-behaved! Elements of the dual cone (linear information
inequalities) can give bounds for optimization problems.

Problem

Find a description of the boundary of H∗
3.
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Shannon inequalities

▶ A function h : 2N → R is a polymatroid if

▶ h(∅) = 0,

▶ h(I | K ) := h(I ∪ K )− h(K ) ≥ 0 (“=” is FD).

▶ h(I : J | K ) := h(I ∪ K ) + h(J ∪ K )− h(I ∪ J ∪ K )− h(K ) ≥ 0 (“=” is CI).

▶ The set PN of polymatroids is a polyhedral cone in R2N and PN ⊇ H∗
N → ITIP.

▶ Elements of the dual cone of PN are the Shannon inequalities.

▶ FD and CI constraints correspond to faces of PN ← LP over H∗
N .

Theorem ([Mat07])

H∗
N is not polyhedral for |N| ≥ 4.
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Conditional Ingleton inequalities

A conditional information inequality is an inequality valid only on a linear slice of H∗
N .

Theorem ([KR13] & [Stu21] & [Boe23])

Up to symmetry there are precisely ten minimal sets of conditional independence
assumptions on four random variables which ensure Ingleton ≥ 0.

Corollary (Which faces of PN have entropic points on them?)

On four discrete random variables there are precisely 18 478 realizable conditional
independence structures. (For general N this problem is undecidable!)

Problem

Which of these inequalities hold on H∗
4? (Some do, some don’t . . . )
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Generating new inequalities: Extension properties

All widely used polyhedral outer approximations to H∗
N which improve upon PN

are derived from an extension property

which is a theorem of the form:

▶ If h ∈ H∗
N , then there exists h ∈ H∗

M for some M ⊇ N such that h|N = h
and some other linear conditions φ(h) ≥ 0 hold.

▶ The extension property is encapsulated in its cone EM
N = {φ(h) ≥ 0 }.

Extension principle: Let EM
N be the cone of an extension property and

πM
N : R2M → R2N the canonical projection. Then H∗

N = πM
N (EM

N ∩ H∗
M ).

Relax: H∗
N ⊆ πM

N (EM
N ∩ PM ).
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Extension properties: Copy lemma

▶ Consider h ∈ PN and pick any L ⊆ N.

▶ An L-copy of N is a set M with |N| = |M| and N ∩M = L with a bijection
σ : N → M fixing L pointwise.

This induces an L-copy of h: σ(h) ∈ PM .

The Copy lemma states:

▶ Let h ∈ H∗
N and L ⊆ N, fix an L-copy σ : N → M of N.

▶ There exists h ∈ H∗
NM such that

h|N = h, h|M = σ(h), h(N : M | L) = 0.

▶ Relaxation: only require h ∈ PNM ! This gives a tighter outer bound than PN :

PN ⊇
⋂
L⊆N

CopyLN ⊇ H∗
N .
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Using extension properties

To derive new information inequalities [DFZ11] and many more:

▶ Take any polyhedral cone QN ⊇ H∗
N .

▶ Replace H∗
• in an extension property with Q•.

▶ Project to obtain tighter polyhedral cone Q′
N ⊇ H∗

N .

▶ Mix and iterate different extension properties.

▶ Exact polyhedral computations certify validity of new inequalities.

To disprove information inequalities [KR13]:

▶ Take an entropy profile h.

▶ Apply a sequence of extension properties to h → polyhedron Q.

▶ If every point in Q violates an inequality, it cannot be valid.

▶ Exact Farkas certificate for invalidity.
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Outlook

▶ There exist more extension properties: Ahlswede–Körner, Slepian–Wolf, . . .

▶ The same concept applies to algebraic matroids (subset of H∗): Dress–Lovász.

▶ Over 200 information inequalities and several infinite families are derived from
the Copy lemma alone. They have been tabulated but are not reusable data.

▶ Want a framework to combine and iterate extension properties based on
polyhedra and linear programming.

Thank you!
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