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Gaussian conditional independence

Consider random variables (ξi)i∈N. The conditional independence (CI) statement
ξi á ξj ∣ ξK conveys, informally, that if ξK is known, then learning the value of ξi does
not give any information about ξj.

Example: Let c1 and c2 be two independent coins and b a bell which rings if and
only if c1 and c2 land with the same side up. What is the conditional independence
relation of the system (c1,c2,b) of random variables? → c1 á c2 and ¬(c1 á c2 ∣ b) …
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Gaussian conditional independence

Let the random vector be normally distributed with covariance matrix Σ ∈ PDN.

Definition
The polynomial Σ[K] ∶= detΣK,K is a principal minor of Σ and Σ[ij ∣K] ∶= detΣiK,jK is
an almost-principal minor.

▸ Σ is PD if and only if Σ[K] > 0 for all K ⊆ N.
▸ ξi á ξj ∣ ξK holds if and only if Σ[ij ∣K] = 0.



Special polynomials

Σ[ij ∣ ] = xij

Σ[ij ∣ k] = xijxkk − xikxjk

Σ[ij ∣ kl] = xijxkkxll − xilxjlxkk + xilxjkxkl + xikxjlxkl − xijx2
kl − xikxjkxll

Σ[ij ∣ klm] = xijxkkxllxmm + ximxjmx2
kl − ximxjlxklxkm − xilxjmxklxkm + xilxjlx2

km

− ximxjmxkkxll + ximxjkxkmxll + xikxjmxkmxll − xijx2
kmxll

+ ximxjlxkkxlm + xilxjmxkkxlm − ximxjkxklxlm − xikxjmxklxlm

− xilxjkxkmxlm − xikxjlxkmxlm + 2xijxklxkmxlm + xikxjkx2
lm

− xijxkkx2
lm − xilxjlxkkxmm + xilxjkxklxmm + xikxjlxklxmm

− xijx2
klxmm − xikxjkxllxmm

⋮



Gaussian CI models

Definition
A CI constraint is a CI statement ξi á ξj ∣ ξK or its negation ¬(ξi á ξj ∣ ξK).
The model of a set of CI constraints is the set of all PD matrices which satisfy them.

Figure: Model of Σ[12 ∣3] = 0 in the space of 3 × 3 correlation matrices.
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Models and inference

Consider two sets of CI statements P and Q:

⋀P ⇒ ⋁Q

is not valid
⇐⇒ P ∪ ¬Q

has a model

Reasoning about relevance statements in normally distributed random variables is
the same as reasoning about the vanishing of very special kinds of determinants
on very special kinds of varieties inside the positive-definite matrices.
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For geometers: conditional independence ≈ collinearity



Examples of CI inference

Consider a general positive-definite 3 × 3 correlation matrix

Σ =
⎛
⎜
⎝

1 a b
a 1 c
b c 1

⎞
⎟
⎠
.

▸ If Σ[12 ∣3] = a − bc and Σ[13 ∣ ] = b vanish, then Σ[12 ∣ ] = a and Σ[13 ∣2] = b − ac
must vanish as well:

[12 ∣3] ∧ [13 ∣ ] ⇒ [12 ∣ ] ∧ [13 ∣2].
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▸ If Σ[12 ∣ ] = a and Σ[12 ∣3] = a − bc vanish,
then bc = Σ[13 ∣ ] ⋅Σ[23 ∣ ] must vanish:

[12 ∣ ] ∧ [12 ∣3] ⇒ [13 ∣ ] ∨ [23 ∣ ].



Rational points on CI models

Šimeček’s Question (2006)
Does every non-empty Gaussian CI model contain a rational point?

Or: can every wrong inference rule be refuted over Q?

⎛
⎜⎜⎜
⎝

1 −1/17 −49/51 −7/17
−1/17 1 1/3 1/7
−49/51 1/3 1 3/7
−7/17 1/7 3/7 1

⎞
⎟⎟⎟
⎠
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Complexity bounds from real geometry

Let fi ∈ Z[t1, . . . , tk] be integer polynomials in finitely many variables.

Theorem (Tarski’s transfer principle)
If a polynomial system {fi &i 0}, where &i ∈ {=, /=,<,≤,≥,>}, has a solution over R,
then it has a solution in a finite real extension of Q.

→ If ⋀P ⇒ ⋁Q is false, there exists a counterexample matrix Σ with algebraic entries.

[12 ∣ ] ∧ [12 ∣3]⇒ [13 ∣ ] is false and a counterexample is

⎛
⎜
⎝

1 0 1/2
0 1 0

1/2 0 1

⎞
⎟
⎠
.



Complexity bounds from real geometry

Let fi,gj,hk ∈ Z[t1, . . . , tk] be integer polynomials in finitely many variables.

Theorem (Positivstellensatz)
A polynomial system {fi = 0,gj ≥ 0,hk /= 0} is infeasible if and only if there exist
f ∈ ideal(fi), g ∈ cone(gj) and h ∈ monoid(hk) such that g + h2 = f.

→ If ⋀P ⇒ ⋁Q is true, there exists an algebraic proof for it with integer coefficients.

[12 ∣ ] ∧ [12 ∣3]⇒ [13 ∣ ] ∨ [23 ∣ ] is true and a proof is the polynomial identity

Σ[13 ∣ ] ⋅Σ[23 ∣ ] = Σ[3] ⋅Σ[12 ∣ ] −Σ[12 ∣3].

The associated decision problem is the existential theory of the reals.



A 5 × 5 final polynomial

The following inference rule is valid for all positive-definite 5 × 5 matrices:

[12 ∣ ]∧[14 ∣5]∧[23 ∣5]∧[35 ∣1]∧[45 ∣2]∧[15 ∣23]∧[34 ∣12]∧[24 ∣135] ⇒ [25 ∣ ]∨[34 ∣ ].

[25 ∣ ][34 ∣ ] ⋅ [1][2][3][15] =
(cd2egr + bd2fgr − ad2grh − 2cd2e2i − 2bd2efi − 2pdfgri + 2ad2ehi + 2pdefi2 − 2pdqhi2 + 2pcqi3 +

2pdqrij − 2pbqi2j − pcegrt + pbfgrt + pagrht + 2pce2it − 2pcqrit + 2pbqhit − 2paehit) ⋅ [12 ∣ ] +
(pdqer + pbqgr − 2pbqei) ⋅ [14 ∣5] − (pcdqr + p2fgr − 2pbcqi + 2pb2qj − 2p2qrj) ⋅ [23 ∣5] +

(cdqgr − 2cdqei + 2pqghi − 2pqfi2 − pqgrj + 2pqeij − 2pe2ft + 2pqfrt) ⋅ [35 ∣1] +
(pd2er − 2pbdei + p2gri + 2pb2et − 2p2ert) ⋅ [45 ∣2] − (2pdfi − 2pbft) ⋅ [15 ∣23] −

(d2gr − 2d2ei − pgrt + 2peit) ⋅ [34 ∣12] − 2pqi ⋅ [24 ∣135].
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Universality theorems

Theorem (B. 2021)
For every finite real extension K/Q there exists a Gaussian CI model MK such that:
for every L/Q, MK has an L-rational point if and only if K ⊆ L.

→ The answer to Šimeček’s question is NO.

Theorem (B. 2021)
The problem of deciding whether a CI inference formula is valid for all Gaussian
distributions is polynomial-time equivalent to the existential theory of the reals.



Approximations to the
inference problem



Approximations to the inference problem

Theorem (Matúš 2005)
The following relations hold for every symmetric matrix Σ:

Σ[ij ∣L]2 = Σ[iL] ⋅Σ[jL] −Σ[L] ⋅Σ[ijL]

→ semimatroids

Σ[kL] ⋅Σ[ij ∣L] = Σ[L] ⋅Σ[ij ∣ kL] +Σ[ik ∣L] ⋅Σ[jk ∣L]

→ gaussoids

These relations define essential geometric properties of symmetric matrices in principal
and almost-principal minor coordinates. Study their combinatorics!
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The Gaussian CI configuration space

Σ[kL] ⋅Σ[ij ∣L] = Σ[L] ⋅Σ[ij ∣ kL] +Σ[ik ∣L] ⋅Σ[jk ∣L]

The Gaussian CI configuration space G ⊆ R2n ×R(
n
2)2n−2 consists of all vectors of

principal and almost-principal minors of Σ ∈ PDn.

Very wasteful encoding of a matrix, but this creates simple and useful relations on
configuration vectors. The CI structure of Σ is encoded in its zero pattern.
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Combinatorial compatibility

Σ[kL] ⋅Σ[ij ∣L] = Σ[L] ⋅Σ[ij ∣ kL] +Σ[ik ∣L] ⋅Σ[jk ∣L]

Combinatorial compatibility means fulfilling polynomial relations under uncertainty:
What if we only knew that all Σ[K] /= 0 and whether or not Σ[ij ∣K] = 0?

[ij ∣L] ∧ [ij ∣ kL] ⇒ [ik ∣L] ∨ [jk ∣L]
[ij ∣L] ∧ [ik ∣ jL] ⇒ [ik ∣L] ∧ [ij ∣ kL]
[ij ∣ kL] ∧ [ik ∣ jL] ⇒ [ij ∣L] ∧ [ik ∣L]
[ij ∣L] ∧ [ik ∣L] ⇒ [ij ∣ kL] ∧ [ik ∣ jL]

This yields the definition of gaussoids.



Combinatorial compatibility

Σ[kL] ⋅Σ[ij ∣L] = Σ[L] ⋅Σ[ij ∣ kL] +Σ[ik ∣L] ⋅Σ[jk ∣L]

Combinatorial compatibility means fulfilling polynomial relations under uncertainty:
What if we only knew that all Σ[K] /= 0 and whether or not Σ[ij ∣K] = 0?

[ij ∣L] ∧ [ij ∣ kL] ⇒ [ik ∣L] ∨ [jk ∣L]
[ik ∣L] ∧ [ij ∣ kL] ⇒ [ij ∣L]

⋮



Combinatorial compatibility

Σ[kL] ⋅Σ[ij ∣L] = Σ[L] ⋅Σ[ij ∣ kL] +Σ[ik ∣L] ⋅Σ[jk ∣L]

Combinatorial compatibility means fulfilling polynomial relations under uncertainty:
What if we only knew that all Σ[K] /= 0 and whether or not Σ[ij ∣K] = 0?

[ij ∣L] ∧ [ij ∣ kL] ⇒ [ik ∣L] ∨ [jk ∣L]
[ik ∣L] ∧ [ij ∣ kL] ⇒ [ij ∣L] ∧ [ik ∣ jL]
[ij ∣ kL] ∧ [ik ∣ jL] ⇒ [ij ∣L] ∧ [ik ∣L]
[ij ∣L] ∧ [ik ∣L] ⇒ [ij ∣ kL] ∧ [ik ∣ jL]

This yields the definition of gaussoids.



CI inference via SAT solvers

Since gaussoids have a finite axiomatization, a SAT solver like CaDiCaL can deduce
implications under the gaussoid axioms:

[12 ∣3] ∧ [12 ∣34] ∧ [24 ∣1] ∧ [34 ∣2]
⇒ [12 ∣ ] ∧ [12 ∣4] ∧ [24 ∣ ] ∧ [24 ∣3] ∧ [24 ∣13] ∧ [34 ∣ ]

These conclusions are valid for all regular Gaussian distributions.



Oriented gaussoids

Σ[kL] ⋅Σ[ij ∣L] = Σ[L] ⋅Σ[ij ∣ kL] +Σ[ik ∣L] ⋅Σ[jk ∣L]

What if we only knew that all sgnΣ[K] = +1 and the value of sgnΣ[ij ∣K]?

[ij ∣L] > 0 ∧ [ij ∣ kL] < 0 ⇒ ([ik ∣L] > 0 ∧ [jk ∣L] > 0) ∨ ([ik ∣L] < 0 ∧ [jk ∣L] < 0)

→ Oriented and orientable gaussoids.

[ij ∣L] ∧ [kl ∣L] ∧ [ik ∣ jlL] ∧ [jl ∣ ikL] ⇒ [ik ∣L]
[ij ∣L] ∧ [kl ∣ iL] ∧ [kl ∣ jL] ∧ [ij ∣ klL] ⇒ [kl ∣L]
[ij ∣L] ∧ [jl ∣ kL] ∧ [kl ∣ iL] ∧ [ik ∣ jlL] ⇒ [ik ∣L]
[ij ∣ kL] ∧ [ik ∣ lL] ∧ [il ∣ jL] ⇒ [ij ∣L]
[ij ∣ kL] ∧ [ik ∣ lL] ∧ [jl ∣ iL] ∧ [kl ∣ jL] ⇒ [ij ∣L]
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CI inference via SAT solvers II

Using the gaussoid axioms, we find:

[12 ∣ ] ∧ [13 ∣4] ∧ [14 ∣5] ∧ [15 ∣23] ∧ [23 ∣5] ∧ [24 ∣135] ∧ [34 ∣12] ∧ [35 ∣1] ∧ [45 ∣2]
⇒ nothing.

The structure on the left is a gaussoid.



CI inference via SAT solvers II

Running the SAT solver CaDiCaL on the definition of oriented gaussoids confirms that
their supports satisfy

[12 ∣ ] ∧ [13 ∣4] ∧ [14 ∣5] ∧ [15 ∣23] ∧ [23 ∣5] ∧ [24 ∣135] ∧ [34 ∣12] ∧ [35 ∣1] ∧ [45 ∣2]
⇒ everything except [25 ∣K] for all K.

The geometric model is a Gaussian graphical model!



The search for inference rules (since at least 2008!)

Inference rules help characterize the realizable CI structures:
▸ 3-variate: 11 out of 64 by Matúš 2005.
▸ 4-variate: 629 out of 16 777 216 by Lněnička and Matúš 2007.
▸ 5-variate: open! (out of 1 208 925 819 614 629 174 706 176)

▸ 254 826 gaussoids modulo symmetry
▸ 87 834 of which are orientable gaussoids
▸ 84 908 of which are selfadhesive orientable gaussoids.
▸ 84 434 of which are selfadhesive (orientable gaussoids ∩ semimatroids).

Help wanted:
▸ Use information inequalities and linear programming.
▸ Tropical approximations and valuated gaussoids.
▸ Compute algebraic realization spaces.
▸ Find and certify real solutions to polynomial systems.
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Proof sketch (1): Algebra ⊆ Synthetic geometry

Point and line configuration for the equation
x2 − 2 = 0.

The configuration is specified by incidences
between points and lines and also the parallelities
of lines.

It is realizable over Q(
√

2) but not over Q.

Keyword for the general technique: von Staudt constructions (1857).



Proof sketch (2): Synthetic geometry ⊆ Gaussian CI

Σ[ij ∣ ] = xij → impose xkl = xkm = xlm = 0 on a correlation matrix, then:
Σ[ij ∣ klm] = xijxkkxllxmm + ximxjmx2

kl − ximxjlxklxkm − xilxjmxklxkm + xilxjlx2
km

− ximxjmxkkxll + ximxjkxkmxll + xikxjmxkmxll − xijx2
kmxll

+ ximxjlxkkxlm + xilxjmxkkxlm − ximxjkxklxlm − xikxjmxklxlm

− xilxjkxkmxlm − xikxjlxkmxlm + 2xijxklxkmxlm + xikxjkx2
lm

− xijxkkx2
lm − xilxjlxkkxmm + xilxjkxklxmm + xikxjlxklxmm

− xijx2
klxmm − xikxjkxllxmm

= xij − ∑
t=k,l,m

xitxjt = xij − ⟨(
xikxilxim
),(

xjk
xjl
xjm
)⟩ .



Incidence relation in a CI model

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

p1 ⋯ pn l1 ⋯ lm x y z
p1 p∗1 ⟨p,p′⟩ px

1 py
1 pz

1
⋮ ⋱ ⟨p, ℓ⟩ ⋮

pn ⟨p′,p⟩ p∗n px
n py

n pz
n

l1 ℓ∗1 ⟨ℓ, ℓ′⟩ ℓx
1 ℓy

1 ℓz
1

⋮ ⟨ℓ,p⟩ ⋱ ⋮
lm ⟨ℓ′, ℓ⟩ ℓ∗m ℓx

m ℓy
m ℓz

m
x px

1 px
n ℓx

1 ℓx
m 1 0 0

y py
1 ⋯ py

n ℓy
1 ⋯ ℓy

m 0 1 0
z pz

1 pz
n ℓz

1 ℓz
m 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠


