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Dual view: Conditional independence inference
Definition

A Cl inference formulais a Boolean formula in implication form whose variables are
Cl statements: AP = V Q, where P and Q are sets of Cl statements.

» How hard is it to decide if an implication is valid?
» How hard is it to certify validity and with what data?
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In: COMPSTAT conference. 2006



Gaussian conditional independence

Assume & = (& : i € N) are jointly Gaussian with covariance matrix ¥ € PDy.

Definition

The polynomial X[K] := det Xk k is a principal minor of ¥ and X [jj| K] = det Xjk jk
is an almost-principal minor.

» X is PDif and only if X[K] >0 for all K c N.
» [&i L& | k] holds if and only if X[jj| K] = 0.
» E[{] = pisirrelevant.



Very special polynomials

£[jj
=[] k
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XjjXkk X1 Xmm + leX/ka/ XimXj1 Xk1 Xkm — XitXjmXki Xkm +
XiIXjIX/%m = XimXimXkk Xil + XimXjk XkmX11 + Xik XimXkm X —
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Gaussian Cl models

Definition
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Definition
The model of a set of Cl constraints is the set of all PD matrices which satisfy them.

Figure: Model of £[12|] = a=0and £[12|3] = a- bc = 0 in the 3 x 3 correlation matrices.
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Models and inference

Consider two sets of Cl statements P and Q:

AP =\0Q Pu-9Q

is not valid has a point

Reasoning about Cl statements in normally distributed random variables is
the same as reasoning about the vanishing of very special kinds of determinants
on very special kinds of varieties inside the positive definite matrices.
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Normal form for proofs and refutations

Let fie Z[t, ..., t] be integer polynomials in finitely many variables.
Theorem (Tarski’s transfer principle)
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then it has a solution in a finite real extension of QQ.



Normal form for proofs and refutations

Let fie Z[t, ..., t] be integer polynomials in finitely many variables.
Theorem (Tarski’s transfer principle)

If a polynomial system {f; w; 0}, where x; € {=,#,<,<,>,>}, has a solution over R,
then it has a solution in a finite real extension of QQ.

- If AP =V Q is false, there exists a counterexample matrix X with algebraic entries.

[12|] A [12]83] = [13]] is false and a counterexample is

1 0 1)
(0 1 O).
0 1
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Normal form for proofs and refutations

Let fi, 9j, hx € Z[t, . .., ] be integer polynomials in finitely many variables.

Theorem (Positivstellensatz)

A polynomial system {f; = 0,g; > 0, hx # 0} is infeasible if and only if there exist
f e ideal(f;), g € cone(g;) and h e monoid(hy) such that g + h? = f.

- If AP = V Qs true, there exists an algebraic proof for it with integer coefficients.

[12]]A[12]|3] = [13]] v [23]] is true and a proof is the final polynomial

T[13]]-T[23]] = £[3]- [12]] - £[12]3].
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The following inference rule is valid for all positive definite 5 x 5 matrices:

[12|]A[14]5]A[23|5]A[35|1]A[45|2]A[15]23]A[34|12]A[24|135] = [25|]v[34]].

[25]](34]]- [1][2][3][15] =

(cd2egr + baPfgr — ad®grh - 2cd?e?i - 2bd?efi — 2pdfgri + 2ad®ehi + 2pdefi? — 2pdghi® + 2pcgi® +
2pdqrij — 2pbgi?j — pcegrt + pbfgrt + pagrht + 2pce?it — 2pcqrit + 2pbghit — 2paehit) [12]]+
(pdqer + pbagr - 2pbqei) -[14|5] - (pcdqr + p2fgr — 2pbcgi + 2pb?qj — 2p2qrj) -[23|5] +

(cdqgr — 2cdqei + 2pqghi — 2pqfi® - pagrj + 2pqeij — 2peft + 2qurt) -[35]1] +
(pdzer ~ 2pbdei + p?gri + 2pb2et - 2p2ert) -[45]|2] - (2pdfi - 2pbft) -[15]23] -
(ogr - 202ei - pgrt + 2peit) - [34 | 12] — 2pqi - [24]135].



Computer algebra proves laws of probabilistic reasoning

QQ[p,a,b,c,d, q,e,f,qg, r,h,i, s,j, tl;
genericSymmetricMatrix(R,p,5);
I = ideal(
det X_{0}~{1}, det X_{0,3}7{2,3}, det X_{0,4}"{3,4},
det X_{1,4}7{2,4}, det X_{2,0}"{4,0}, det X_{3,1}~{4,1},
det X_{0,1,2}"{4,1,2}, det X {2,0,1}"{3,0,1},
det X_{1,0,2,4}~{3,0,2,4}

<X =
1)

= gxhxpxqxr* (pxt-d~2); -- [25]][34|]-[1][2][3][15] € monoid(V)
Us% I -->0, meaning monoid(V) nideal(V) # @ in Q[X]
- Get a proof that U is in I:
G = gens I; -- the equations generating ideal())
H=U// G; -- linear combinators for U from G
U == GxH --> true
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The complexity class 3R contains all decision problems which can be reduced in
polynomial time to the feasibility of a semialgebraic set:

» polynomial optimization
» computational geometry
» algebraic statistics ...

Theorem

The problem of deciding whether a Gaussian Cl model is non-empty is AR -complete.
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Does every non-empty Gaussian Cl model contain a rational point?

Or: can every wrong inference rule be refuted over Q7?

Model M85 Where: .

1abc ‘"o T 1 -1/17 -49/51 -7/17
alde ,_;.- ' ;5ae -1/17 1 1/3 1/7
b d ‘j : 158209 ~49/51 1/3 1 3/7
c e

3, 1
d=10e=2.f = =717 17 3/7 1



Consistency certification is hard

Simeé&ek’s Question (2006)

Does every non-empty Gaussian Cl model contain a rational point?

Or: can every wrong inference rule be refuted over Q?

Theorem

For every finite real extension K of Q there exists a Cl model M such that M + @
but M n PDN(K) = .



Very special polynomials revisited

Y [ij|] = xj — impose Xk = Xkm = Xim = 0 on a correlation matrix, then:
Y [ij| klm] = : IXIXE
[if | Km] = i Xsae X1 Ximm ~+ XimXjmXig — XimXGi X Xkm — XiiXjmXki Xiem + Xit Xji Xjom
2
= XimXimXkk X1 + XimXjk XkmX11 + Xik XjmXkm X1 — Xij Xem X

+ XimXj1 Xkk Xim + Xit XimXkk Xim — XimXjk Xk1 Xim — Xik Xjim Xk Xim

2
= XitXjk XkmXim — Xik Xjt XkmXim + 2Xjj X1 XkmXim + Xik Xjk Xipm
2
= XijXkk Xjm — X Xji Xk Xmm + Xii Xjk Xki Xmm + Xik Xji Xkl Xmm
2
= Xij X Xmm = Xik Xjk X1 Xmm

Xik Xk
=xj= Y xge = x5—{( ) 2 ).
k=K., m

Xjm



Covariance matrix simulating a projective plane

P1 Pn I m X y z

P Py (p,p) pf Pl pf
: (p,?) :

| (P',P) Jo Py Ph P;

h 7 oy 6 f g
(¢, p) :

Im (¢, 0) 05 e 02

X Py Jod o oy, x* 0 0

y p1V p% g{ g%’n 0 y* 0

: \ o oG g ooz

The rest is 19 century projective geometry.
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Where is Waldo?
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Where is Waldo? On the cube root of 4!
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Bonus question

Matus$’'s Question (1999); also Sturmfels (2007)

Can every invalid inference for discrete Cl structures be refuted over Q?

load "simecek.m2";
f = binaryMomentMap 4; -- ... more setup

-- (Linear slice of) CI equations of binary RVs in moment coordinates
Eqns {{1},{2},{}} --> €12
Eans {{1},{2},{3}} --> €12 — ©13623
Eqns {{1},{2},{3,4}} --> €12 — €13€23 — €14€24 + €34€1234 and
--> €1234 — €14€23 — €13624 + €12€34
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