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Conditional independence models

Definition

A CI constraint is a CI statement [ξi á ξj ∣ ξK ] or its negation ¬[ξi á ξj ∣ ξK ] constraining
a random vector ξ.

▸ How hard is it to decide if a set of constraints is consistent?
▸ How hard is it to certify consistency by exhibiting a distribution?

Dual view: Conditional independence inference

Definition

A CI inference formula is a Boolean formula in implication form whose variables are
CI statements: ⋀P ⇒ ⋁Q, where P and Q are sets of CI statements.

▸ How hard is it to decide if an implication is valid?
▸ How hard is it to certify validity and with what data?



1 / 17

Conditional independence models

Definition

A CI constraint is a CI statement [ξi á ξj ∣ ξK ] or its negation ¬[ξi á ξj ∣ ξK ] constraining
a random vector ξ.

▸ How hard is it to decide if a set of constraints is consistent?
▸ How hard is it to certify consistency by exhibiting a distribution?

Dual view: Conditional independence inference

Definition

A CI inference formula is a Boolean formula in implication form whose variables are
CI statements: ⋀P ⇒ ⋁Q, where P and Q are sets of CI statements.

▸ How hard is it to decide if an implication is valid?
▸ How hard is it to certify validity and with what data?



1 / 17

Conditional independence models

Definition

A CI constraint is a CI statement [ξi á ξj ∣ ξK ] or its negation ¬[ξi á ξj ∣ ξK ] constraining
a random vector ξ.

▸ How hard is it to decide if a set of constraints is consistent?
▸ How hard is it to certify consistency by exhibiting a distribution?

Dual view: Conditional independence inference

Definition

A CI inference formula is a Boolean formula in implication form whose variables are
CI statements: ⋀P ⇒ ⋁Q, where P and Q are sets of CI statements.

▸ How hard is it to decide if an implication is valid?
▸ How hard is it to certify validity and with what data?



1 / 17

Conditional independence models

Definition

A CI constraint is a CI statement [ξi á ξj ∣ ξK ] or its negation ¬[ξi á ξj ∣ ξK ] constraining
a random vector ξ.

▸ How hard is it to decide if a set of constraints is consistent?
▸ How hard is it to certify consistency by exhibiting a distribution?

Dual view: Conditional independence inference

Definition

A CI inference formula is a Boolean formula in implication form whose variables are
CI statements: ⋀P ⇒ ⋁Q, where P and Q are sets of CI statements.

▸ How hard is it to decide if an implication is valid?
▸ How hard is it to certify validity and with what data?



2 / 17

Petr Šimeček. “Gaussian representation of independence models over four random variables”.
In: COMPSTAT conference. 2006
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Gaussian conditional independence

Assume ξ = (ξi ∶ i ∈ N) are jointly Gaussian with covariance matrix Σ ∈ PDN .

Definition

The polynomial Σ[K ] ∶= det ΣK ,K is a principal minor of Σ and Σ[ij ∣K ] ∶= det ΣiK ,jK

is an almost-principal minor.

▸ Σ is PD if and only if Σ[K ] > 0 for all K ⊆ N.

▸ [ξi á ξj ∣ ξK ] holds if and only if Σ[ij ∣K ] = 0.

▸ E[ξ] = µ is irrelevant.
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Very special polynomials

Σ[ij ∣ ] = xij

Σ[ij ∣ k] = xijxkk − xik xjk

Σ[ij ∣ kl] = xijxkk xll − xilxjlxkk + xilxjk xkl + xik xjlxkl − xijx2
kl − xik xjk xll

Σ[ij ∣ klm] = xijxkk xllxmm + ximxjmx2
kl − ximxjlxklxkm − xilxjmxklxkm +

xilxjlx2
km − ximxjmxkk xll + ximxjk xkmxll + xik xjmxkmxll −

xijx2
kmxll + ximxjlxkk xlm + xilxjmxkk xlm − ximxjk xklxlm −

xik xjmxklxlm − xilxjk xkmxlm − xik xjlxkmxlm + 2xijxklxkmxlm +

xik xjk x2
lm − xijxkk x2

lm − xilxjlxkk xmm + xilxjk xklxmm +

xik xjlxklxmm − xijx2
klxmm − xik xjk xllxmm

⋮



5 / 17

Gaussian CI models

Definition

The model of a set of CI constraints is the set of all PD matrices which satisfy them.

Figure: Model of Σ[12 ∣3] = a − bc = 0 in the 3 × 3 correlation matrices.
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The model of a set of CI constraints is the set of all PD matrices which satisfy them.

Figure: Model of Σ[12 ∣ ] = a = 0 and Σ[12 ∣3] = a − bc = 0 in the 3 × 3 correlation matrices.
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Models and inference

Consider two sets of CI statements P and Q:

⋀P ⇒ ⋁Q

is not valid
⇐⇒ P ∪ ¬Q

has a point

Reasoning about CI statements in normally distributed random variables is
the same as reasoning about the vanishing of very special kinds of determinants
on very special kinds of varieties inside the positive definite matrices.
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For ancient geometers: conditional independence ≈ collinearity
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Normal form for proofs and refutations

Let fi ∈ Z[t1, . . . , tk] be integer polynomials in finitely many variables.

Theorem (Tarski’s transfer principle)

If a polynomial system {fi &i 0}, where &i ∈ {=, /=,<,≤,≥,>}, has a solution over R,
then it has a solution in a finite real extension of Q.

→ If ⋀P ⇒ ⋁Q is false, there exists a counterexample matrix Σ with algebraic entries.

[12 ∣ ] ∧ [12 ∣3] ⇒ [13 ∣ ] is false and a counterexample is

⎛

⎜

⎝

1 0 1/2

0 1 0
1/2 0 1

⎞

⎟

⎠

.
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Normal form for proofs and refutations

Let fi ,gj ,hk ∈ Z[t1, . . . , tk] be integer polynomials in finitely many variables.

Theorem (Positivstellensatz)

A polynomial system {fi = 0,gj ≥ 0,hk /= 0} is infeasible if and only if there exist
f ∈ ideal(fi), g ∈ cone(gj) and h ∈ monoid(hk) such that g + h2

= f .

→ If ⋀P ⇒ ⋁Q is true, there exists an algebraic proof for it with integer coefficients.

[12 ∣ ] ∧ [12 ∣3] ⇒ [13 ∣ ] ∨ [23 ∣ ] is true and a proof is the final polynomial

Σ[13 ∣ ] ⋅Σ[23 ∣ ] = Σ[3] ⋅Σ[12 ∣ ] −Σ[12 ∣3].
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Computer algebra proves laws of probabilistic reasoning

The following inference rule is valid for all positive definite 5 × 5 matrices:

[12 ∣ ]∧[14 ∣5]∧[23 ∣5]∧[35 ∣1]∧[45 ∣2]∧[15 ∣23]∧[34 ∣12]∧[24 ∣135] ⇒ [25 ∣ ]∨[34 ∣ ].

[25 ∣ ][34 ∣ ] ⋅ [1][2][3][15] =

(cd2egr + bd2fgr − ad2grh − 2cd2e2i − 2bd2efi − 2pdfgri + 2ad2ehi + 2pdefi2
− 2pdqhi2 + 2pcqi3 +

2pdqrij − 2pbqi2j − pcegrt + pbfgrt + pagrht + 2pce2it − 2pcqrit + 2pbqhit − 2paehit) ⋅ [12 ∣ ] +

(pdqer + pbqgr − 2pbqei) ⋅ [14 ∣5] − (pcdqr + p2fgr − 2pbcqi + 2pb2qj − 2p2qrj) ⋅ [23 ∣5] +

(cdqgr − 2cdqei + 2pqghi − 2pqfi2
− pqgrj + 2pqeij − 2pe2ft + 2pqfrt) ⋅ [35 ∣1] +

(pd2er − 2pbdei + p2gri + 2pb2et − 2p2ert) ⋅ [45 ∣2] − (2pdfi − 2pbft) ⋅ [15 ∣23] −

(d2gr − 2d2ei − pgrt + 2peit) ⋅ [34 ∣12] − 2pqi ⋅ [24 ∣135].
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Computer algebra proves laws of probabilistic reasoning

R = QQ[p,a,b,c,d, q,e,f,g, r,h,i, s,j, t];

X = genericSymmetricMatrix(R,p,5);

I = ideal(

det X_{0}^{1}, det X_{0,3}^{2,3}, det X_{0,4}^{3,4},

det X_{1,4}^{2,4}, det X_{2,0}^{4,0}, det X_{3,1}^{4,1},

det X_{0,1,2}^{4,1,2}, det X_{2,0,1}^{3,0,1},

det X_{1,0,2,4}^{3,0,2,4}

);

U = g*h*p*q*r*(p*t-d^2); -- [25 ∣ ][34 ∣ ] ⋅ [1][2][3][15] ∈ monoid(V)
U % I --> 0, meaning monoid(V) ∩ ideal(V) /= ∅ in Q[X]

-- Get a proof that U is in I:

G = gens I; -- the equations generating ideal(V)
H = U // G; -- linear combinators for U from G

U == G*H --> true
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Consistency checking is hard

The complexity class ∃R contains all decision problems which can be reduced in
polynomial time to the feasibility of a semialgebraic set:

▸ polynomial optimization
▸ computational geometry
▸ algebraic statistics . . .

Theorem

The problem of deciding whether a Gaussian CI model is non-empty is ∃R-complete.
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Consistency certification is hard

Šimeček’s Question (2006)

Does every non-empty Gaussian CI model contain a rational point?

Or: can every wrong inference rule be refuted over Q?
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⎛

⎜
⎜
⎜

⎝

1 −1/17 −49/51 −7/17
−1/17 1 1/3 1/7
−49/51 1/3 1 3/7
−7/17 1/7 3/7 1

⎞

⎟
⎟
⎟

⎠



12 / 17

Consistency certification is hard

Šimeček’s Question (2006)

Does every non-empty Gaussian CI model contain a rational point?

Or: can every wrong inference rule be refuted over Q?

Theorem

For every finite real extension K of Q there exists a CI modelM such thatM /= ∅

butM∩ PDN(K) = ∅.
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Very special polynomials revisited

Σ[ij ∣ ] = xij → impose xkl = xkm = xlm = 0 on a correlation matrix, then:

Σ[ij ∣ klm] = xijxkk xllxmm + ximxjmx2
kl − ximxjlxklxkm − xilxjmxklxkm + xilxjlx2

km

− ximxjmxkk xll + ximxjk xkmxll + xik xjmxkmxll − xijx2
kmxll

+ ximxjlxkk xlm + xilxjmxkk xlm − ximxjk xklxlm − xik xjmxklxlm

− xilxjk xkmxlm − xik xjlxkmxlm + 2xijxklxkmxlm + xik xjk x2
lm

− xijxkk x2
lm − xilxjlxkk xmm + xilxjk xklxmm + xik xjlxklxmm

− xijx2
klxmm − xik xjk xllxmm

= xij − ∑

k=k ,l,m
xik xjk = xij − ⟨(

xik
xil
xim

),(
xjk
xjl
xjm

)⟩ .
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Covariance matrix simulating a projective plane

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

p1 ⋯ pn l1 ⋯ lm x y z

p1 p∗1 ⟨p,p′⟩ px
1 py

1 pz
1

⋮ ⋱ ⟨p, `⟩ ⋮

pn ⟨p′,p⟩ p∗n px
n py

n pz
n

l1 `∗1 ⟨`, `′⟩ `x
1 `y

1 `z
1

⋮ ⟨`,p⟩ ⋱ ⋮

lm ⟨`′, `⟩ `∗m `x
m `y

m `z
m

x px
1 px

n `x
1 `x

m x∗ 0 0
y py

1 ⋯ py
n `y

1 ⋯ `y
m 0 y∗ 0

z pz
1 pz

n `z
1 `z

m 0 0 z∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

The rest is 19th century projective geometry.
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Von Staudt constructions

0 x y

0 x y0 x y x + y0 x y

Addition

0 1 x y

0 1 x y0 1 x y x ⋅ y0 1 x y

Multiplication
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Where is Waldo?

1 W

3
√

4

0
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Where is Waldo? On the cube root of 4!

1

W

3
√

40



17 / 17

Bonus question

Matúš’s Question (1999); also Sturmfels (2007)

Can every invalid inference for discrete CI structures be refuted over Q?

load "simecek.m2";

f = binaryMomentMap 4; -- ... more setup

-- (Linear slice of) CI equations of binary RVs in moment coordinates

Eqns {{1},{2},{}} --> e12

Eqns {{1},{2},{3}} --> e12 − e13e23

Eqns {{1},{2},{3,4}} --> e12 − e13e23 − e14e24 + e34e1234 and

--> e1234 − e14e23 − e13e24 + e12e34
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