Computational problems in
probabilistic reasoning

Tobias Boege
based on joint work with
Tabea Bacher and Ben Hollering

,, Aalto University
School of Science

SIAM AG 2023, TU Eindhoven,
Computational real algebraic geometry Ill,
13 July 2023



Matroids and laws of geometry

» Matroids are combinatorial structures
which model “special position” relations
in geometry.



Matroids and laws of geometry

» Matroids are combinatorial structures
which model “special position” relations
in geometry.

» For example the matroid of a set of
points in the projective plane records
which triples of points lie on a line.



Matroids and laws of geometry

» Matroids are combinatorial structures
which model “special position” relations
in geometry.

» For example the matroid of a set of
points in the projective plane records
which triples of points lie on a line.

» Non-realizability of matroids captures the
(non-obvious) laws of geometry.
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Now think of X, Y, Z as jointly distributed random variables instead of points in a
common ambient space. The analogue of special position is:

Conditional independence X 1L Y | Z

“Does knowing Z make X irrelevant for Y?”

Laws of probabilistic reasoning

Let X1, ..., X, be jointly distributed random variables. Assume that X; 1L X; | Xk for
some choices of i,j € [n] and K c [n] ~ {i,j}. Which other Cl statements X, 1L Xs | Xt
also hold?
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Dictionary matroid theory — conditional independence

Special position properties of discrete random variables can be formulated in terms of
linear functionals on the entropy vector (“rank function”):

» h(x): rank — entropy

v

h(x,y,z) + h(z) = h(x, z) + h(y, z): modular pair - conditional independence

v

h(x,y) = h(x) + h(y): independence — independence

v

h(x,z) = h(z): closure operator — functional dependence

v

h(x,z) = h(x) = h(z): parallel - functional equivalence

» h(x) = 0: loop — constant random variable

Even though entropy is a transcendental function, all of these conditions are
polynomial in the probabilities — algebraic statistics.
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Classification of binary Cl models

Goal: Create a database with all Cl models of 4 binary random variables.

» The joint distribution of n binary random variables Xi, ..., X, is described by a
2 x2x---x 2 tensor p of non-negative real numbers which sum to 1:

pX1an = Pr(X,- =Xj: i€ [n])

» For K ¢ [n], the marginal p has entries p ;= Pr(Xj, = xi : k € K).

» The marginal Cl statement X; 1L X; mandates the tensor decomposition:

» The general Cl statement X; 1L X; | Xk requires this decomposition for all
2lKl slices of the marginal tensor p{"/}“K - many quadratic equations.



Models and axioms

To every formula ¢ = Ap[ X, L X}, | Xk, ] = V¢[ X, 1L Xs, | X7,] there is a semialgebraic
set K(p) of counterexamples, i.e., real 2 x 2 x 2 x 2 tensors:

(27) with non-negative entries,

(#) satisfying all X, 1L Xj, | Xk, but

() satisfying none of the X;, 1L X, | X7,.



Models and axioms

To every formula ¢ = Ap[ X, L X}, | Xk, ] = V¢[ X, 1L Xs, | X7,] there is a semialgebraic
set K(p) of counterexamples, i.e., real 2 x 2 x 2 x 2 tensors:
(22) with non-negative entries,
(#) satisfying all X, 1L Xj, | Xk, but
() satisfying none of the X;, 1L X, | X7,.
» pis valid (or an axiom) if and only if K(¢) = @.
» A set of Cl statements implying nothing else is a model.



Models and axioms

To every formula ¢ = Ap[ X, L X}, | Xk, ] = V¢[ X, 1L Xs, | X7,] there is a semialgebraic
set K(p) of counterexamples, i.e., real 2 x 2 x 2 x 2 tensors:

(22) with non-negative entries,
(#) satisfying all X, 1L Xj, | Xk, but
() satisfying none of the X;, 1L X, | X7,.

» pis valid (or an axiom) if and only if K(¢) = @.
» A set of Cl statements implying nothing else is a model.

Conjecture

The problem of deciding validity for binary distributions is ¥YR-complete.
Moreover, all real algebraic numbers are necessary to certify invalidity.

But in n = 4 we expect every model to be rationally realizable.
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Known laws |

Theorem ([Mat18])

The following laws are valid and complete for 3 binary random variables™ :

[XLYJA[XLZ|Y] = [XLY|Z]A[XLZ] (M1)
[XLY|ZIA[XLZ|Y] = [XLY]A[XLZ] (M2)
[XLY|A[XLY|Z] = [XLZ]v[YL2Z] (M3)

* If they satisfy no functional dependencies.

» SAT solvers can be used to derive more axioms logically implied by those above,
to count or enumerate structures satisfying these axioms.



Known laws I

Theorem ([Sim07]*)

The following laws are valid for 4 binary random variables:

[XLY|Z,WIAXLY|ZIAXLW]IA[ZLW] = [XLW|Z]v]Y1LW]
(XLY|ZWIAXLY|ZIAXLWIAYLZ] = [XLW]|Y]v[ZLW]
[XLY|ZWIAXLY]A[YLZIA[ZLWIA[XLW] = [XLW]|Z]v[ZLW]Y]

(XLY|ZWIAXLW|Y]A[ZLW|Y] = [YLZ|W]V[XLY]|Z]

(XLY|[ZWIAXLYIA[YLZIA[Y LWIAXLY | ZIA[YLZ|X] = [XLW|Z]v[XLY]|W].

* (83) was incorrect in [Sim07].



Audience participation

What is the vanishing ideal of the set of real non-negative 2 x 2 x 2 x 2 tensors p
which satisfy

PooooP1100 = Po100P1000  Pooo1P1101 = Po101L1001 } (X1Y|Z, W]
PootoP1110 = Pot10P1010  Poo11P1111 = Po111P1011

(Poooo + Pooot ) (P1o10 + P1011) = (Pooto + Poot1) (P100o + P1oo1)
(Po100 + Pot01) (P1110 + P1111) = (Pot10 + Po111) (P1100 + P1101)
(Poooo + Poot0) (P1001 + P1o11) = (Pooot + Poot1) (P1ooo + Pioto)

(Pot10o + Po110) (P1101 + P1111) = (Poto1 + Po111) (P1100 + P1110)

} [(X1Z]|Y]

} [XLW]Y]
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Classification of binary Cl models

Current state:
» Matis§’s axioms permit 178 models up to S4 symmetry. sat computation
» [Mat18] solves all cases which do not contain [X 1L Y | Z, W] — 104. linear program
» Simeéek’s axioms handle some of those cases — 91. sat computation
» Every model realizable by a regular Gaussian [LM07] on n= 4 is binary — 57.
» Sampling of 2 x 2 x 2 x 2 tensors — 39

Openeg. [XLY|Z,WIAXLZ|Y]A[XUW]|Y] = ?
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v

Change to moment coordinates!

v

Get conjectures for laws via numerical samples from Cl varieties and try to prove
them symbolically. (Analogous to numerical irreducible decomposition.)

v

Certify numerically obtained counterexamples.
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Theorem (Normal forms for proof and refutation)

The formula  is invalid if and only if K () contains a point p e R?*2*2*2 whose entries
are algebraic over Q. On the other hand, ¢ is valid if and only if there are polynomials
fe I(p),ge P(p),he.#(p)suchthatf+g+h =0¢eZ[p].

These certificates are not used in practice. Why?
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