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Linear structural equation models

» A linear structural equation model defines random
variables X recursively via a directed acyclic graph
G = (V, E) and Gaussian noise:

Xj= Y AiXite e~ N(Ow)
i€pa(j)

» Parents of node j are regarded as direct causes of j.

» The vector X is again Gaussian with mean zero. Since G is acyclic, we can solve
for the covariance matrix ¥:

Y=0U-N"TQU-N"1, with A € RE and Q = diag(w).

» All such matrices form the model M(G) C PDy,.



Reasoning with graphical models
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The mantra of algebraic statistics

Statistical models are algebraic varieties*

This set of 3-variate Gaussian distributions in a
certain graphical model is defined by a single
polynomial equation in its covariance matrix

o12(1 + 023 — 03,) = 013.

Algebraic statistics studies statistical models and
problems using methods of algebraic geometry and
computer algebra.

*sometimes
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Properties of SEMs

» M(G) is an irreducible algebraic subvariety and a smooth submanifold of PDy,.
» The parameters (w, ) are rationally identifiable.
» The model is equivalently given by the Markov property of the DAG, e.g.,
M(G) ={X € PDy : X; 1L X; | Xya(j) Whenever jj & E}.
» Almost all distributions in M(G) are faithful to G, i.e., do not satisfy more
Cl statements than the global Markov property.

» Model equivalence M(G) = M(H) is combinatorially characterized:
if and only if G and H have the same skeleton and v-structures.

» Markov equivalence = ambiguity about the direction of causality.



Colored Gaussian DAG models

» In a colored Gaussian DAG model, the vertices and
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Colored Gaussian DAG models

» In a colored Gaussian DAG model, the vertices and

edges of G are partitioned into color classes via a
coloring function ¢ : VU E — Cy U CE.

» The parametrization ¥ = (/ — A)~TQ(/ — A)~! stays
the same but we reduce the parameter space: w; = w;
if c(i) = c(j) and \jj = Ay if c(ij) = c(kI).

» This restricts the parameters to a linear subspace.

» Vertex-only colorings correspond to partial homoscedasticity [WD23].
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Coloring can disambiguate the causal structure

» Coloring reduces Markov-equivalence classes which eases causal discovery.
» The vanishing ideal in both cases is The first vanishing ideal is:
hsjp = ( 013022 — 012023 ) hspp + { 012022 — 011023, 0%, — 011013 )

» Generator is invariant under 1 < 3. » Not invariant anymore.
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Parameter identifiability revisited

Consider the functions  wjja(X) = Var(X; | Xa) and \ja(X) = %m

Theorem
Let G = (V,E) be a DAG. Then:
> wj = wja(X) for every ¥ € M(G) if and only if pa(j) C A C V \ de(j). [WD23]

> Ifij ¢ E, then \jj = 0 = \j;ja(X) forevery X € M(G) if and only if A\ i d-separates
i and j in G. [Folklore]

» Ifij € E, then \jj = \jja(X) for every ¥ € M(G) if and only ifi € AC V \ de())
and A\ i d-separates i and j in the graph Gjj which arises from G by deleting the
edge ij and the vertices de(j).

This expresses the causal and coloring conditions \jj = 0, w; = w; and A\jj = Ay
as polynomial conditions cir, ver and ecr in X.



Model geometry

Theorem

For every colored DAG (G, c) the model M(G, c) has irreducible Zariski closure and
is a smooth submanifold of PDy. It is diffeomorphic to an open ball of dimension
ve + ec (the number of vertex- and edge-color classes).



Model geometry

Theorem

For every colored DAG (G, c) the model M(G, c) has irreducible Zariski closure and
is a smooth submanifold of PDy. It is diffeomorphic to an open ball of dimension
ve + ec (the number of vertex- and edge-color classes).

Theorem
The vanishing ideal Pg . of M(G,c) is (Ig + Ic) : S¢ where:
» Ic = (cir(ij|pa(j)) : ij & E) is the conditional independence ideal of G,

> I = (ver(ilpa(i), jlpa(j)) : (i) = c(j)) + {ecr(ij|pa(j), kl|pa(/)) : c(ij) = c(kI))
is the coloring ideal of G,

> Sc = {I[Tjcv |Zpa()|¥ : kj € N} is the monoid of parental principal minors.



Model geometry

Theorem

For every colored DAG (G, c) the model M(G, c) has irreducible Zariski closure and
is a smooth submanifold of PDy. It is diffeomorphic to an open ball of dimension
ve + ec (the number of vertex- and edge-color classes).

Theorem
The vanishing ideal Pg . of M(G,c) is (Ig + Ic) : S¢ where:
» Ic = (cir(ij|pa(j)) : ij & E) is the conditional independence ideal of G,

> I = (ver(ilpa(i), jlpa(j)) : (i) = c(j)) + {ecr(ij|pa(j), kl|pa(/)) : c(ij) = c(kI))
is the coloring ideal of G,

> Sc = {I[Tjcv |Zpa()|¥ : kj € N} is the monoid of parental principal minors.

» Resolves the colored generalization of a conjecture of Sullivant; see also [RP14].



Application to implicitization

needsPackage '"Graphicallodels";

v = {0,1,2,3,4,5};

G = digraph(v,{{0,2},{0,3},{1,2},{1,3},{2,3},{3,4},{0,5},{1,5},{2,5},{3,5},{4,53});
R = gaussianRing G; S = covarianceMatrix R;

allE = set(flatten for i in O0..#V-1 list for j in i+1..#V-1 list (V#i,V#j));

-- Vanishing ideal via built-in elimination method: not finished after 20 minutes
time I1 = gaussianVanishingIdeal R;

-- Vanishing ideal via saturation: 0.186855 seconds
time (
prs = for i in V list (
P := tolist parents(G, i);
if #P == 0 then 1 else det submatrix(S, P, P)

);

J = ideal for ij in toList(allE-set(edges G)) list (
P := tolist parents(G, ij#1);
det submatrix(S, {ij#0}|P, {ij#1}|P)

)
I2 = fold(saturate, J, prs);
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Faithfulness

Fix a colored DAG (G, c) and ¥ € M(G,c).

» Y is faithful to G if it satisfies no more Cl statements than the d-separations in G.
» > is faithful to c if it satisfies no more ver or ecr relations than those from c.

Theorem ([WD23; STD10])

» Generic ¥ € M(G,c) is faithful to c.
» Generic ¥ € M(G,c) is faithful to G if c is a vertex coloring or an edge coloring.
2 5 4—?1
» The example on the right colors vertices and edges. .
The generic matrix in the model satisfies X; 1L Xy | Xs.
Not faithful to G!
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Structure identifiability

Theorem ([WD23])

If (G, c) and (H, c) are vertex-colored DAGs, then M(G, c) = M(H, c) if and only if
G and H are Markov-equivalent and pac(j) = pay(j) for all j € V with |c71(j)| > 2.

An edge-colored DAG (G, ¢) is BPEC if:
» proper: all edge color classes have size at least two,

» blocked: color classes partition parent sets of each node.

Theorem

If (G, c) and (H,d) are two BPEC-DAGs, then M(G,c) = M(H,d) implies
(G,c) = (H,d). In particular, the Markov-equivalence classes of BPEC-DAGs are
singletons and the causal structure is identifiable.



Wine tasting

A sensible subgraph:

Free SO» Total SO, Sulphates
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