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Gaussian conditional independence

Consider random variables (&;)jen. The conditional independence (Cl) statement &; 1L &; | &x
conveys, informally, that if £k is known, then learning the value of &; does not give any
information about ;.

>

Tobias Boege // The Gaussian Cl inference problem



Gaussian conditional independence

Consider random variables (&;)jen. The conditional independence (Cl) statement &; 1L &; | &x
conveys, informally, that if £k is known, then learning the value of &; does not give any
information about ;.

Example: Let c; and cy be two independent coins and b a bell which rings if and only if

c1 and ¢y land with the same side up. What is the conditional independence relation of the
system (c1,cp,b) of random variables?
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Gaussian conditional independence

Consider random variables (&;)jen. The conditional independence (Cl) statement &; 1L &; | &x
conveys, informally, that if £k is known, then learning the value of &; does not give any
information about ;.

Example: Let c; and cy be two independent coins and b a bell which rings if and only if

c1 and ¢y land with the same side up. What is the conditional independence relation of the
system (c1,cp,b) of random variables? — ¢ 1l co and —=(c1 lLcp | b) and ...
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Gaussian conditional independence

Let the random vector be normally distributed: (&;)jen ~ N (1, X).
Definition
The polynomial X[K] = det ¥k  is a principal minor of ¥ and ¥[ij|K] = det ¥k jk is an

almost-principal minor.

If X is positive-definite, then X[K] >0, and & 1 & | {k holds if and only if X[ij|K] = 0.
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Almost-principal minors

=[]

= [ijlk

= [ij|kl
¥ [ij|kim

Xij
= XijXkk ~ XikXjk

2
= XijXkk Xl — XitXji Xkk + XitXjk Xkl + Xik Xj1 Xkl = XijXjej = Xik Xjk Xil

—_ e e

= XjjXkk X1 Xmm + XiijmX/%/ = XimXjIXkiXkm — XilXjmXkiXkm + X//Xj/XEm
= XimXimXkk Xl + XimXjkXkmX|l + XikXjmXkmXil — Xin/%mX//
+ XimXjI XkkXim t Xi1XjmXkkXim = XimXjkXkiXim = XikXjmXkIXim
= XiIXjk XkmXim = Xik XjiXkmXim + 2Xij XkI XkmXim + XikakXﬁn
- Xinkaﬁ77 = XiIXjIXkkXmm T XilXjkXkIXmm t Xik XjI1XkIXmm

2
= Xij X1 Xmm — XikXjk X[ Xmm
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Gaussian Cl models

Definition

A Cl constraint is a Cl statement &; 1L §; | £k or its negation —(&; L& | k). They are
algebraic conditions on the entries of ¥, equivalent to vanishing or non-vanishing of the
almost-principal minors X[ij|K].

Definition
The model of a set of Cl constraints is the set of all positive-definite matrices which satisfy

the constraints.
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Gaussian Cl models

Figure: Model of X[12|3] = 0 in the space of 3 x 3 correlation matrices. D
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Models and inference

Consider two sets of Cl statements P and Q:

AP =\VQ
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Models and inference

Consider two sets of Cl statements P and Q:

AP=>VQ - Pu-0Q

is not valid is non-empty
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Models and inference

Consider two sets of Cl statements P and Q:

AP =\VQ — Pu-0Q

is not valid is non-empty

Reasoning about relevance statements in normally distributed random variables is
the same as reasoning about the vanishing of very special kinds of determinants
on very special kinds of varieties inside the positive-definite matrices.
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T

For geometers: conditional independence ~ collinearity
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Examples of Cl inference

Consider a general positive-definite 3 x 3 correlation matrix

1 a b
Y=la 1 c]|.
b c 1

* If X[12|3] = a— bc and X[13|] = b vanish, then ¥[12|] = a and X[13]2] = b- ac
must vanish as well:
(1213) A (13]) = (12]) A (13[2).

>
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Examples of Cl inference

° If X[12|] = a and X[12|3] = a— bc vanish,
then bc = X[13|]- X[23|] must vanish:

(12]) A (12]3) = (13|) v (23)).
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Rational points on Cl models

Simetek’s Question (2006)

Does every non-empty Gaussian Cl model contain a rational point?

Or: can every wrong inference rule be refuted over Q?
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Rational points on Cl models

Simetek’s Question (2006)

Does every non-empty Gaussian Cl model contain a rational point?

Or: can every wrong inference rule be refuted over Q?

Model M85 Wwhere:

1abc “ om0 1}17 —1{17 —419;/351 —Iﬁ7
alde ,_ . __100 /iy -

/ bd1f b =10 ={5go09 V1107463 -49/51 1/3 1 3/7
cef 1 4- =%f -7/17 17 3/7 1
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Complexity bounds from real geometry

Let f; € Z[t1,..., tx] be integer polynomials in finitely many variables.

Theorem (Tarski's transfer principle)

If a polynomial system {f; w; 0}, where x; € {=,4,<,<,>,>}, has a solution over R,
then it has a solution in a finite real extension of Q.

> If AP =V Q is false, there exists a counterexample matrix X with algebraic entries.

(12]) A (12]3) = (13]) is false and a counterexample is

1 0 1
01 0
120 1
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Complexity bounds from real geometry

Let F,f;,gj € Z[t1,...,tx] be integer polynomials in finitely many variables.

Theorem (Positivstellensatz)

A polynomial F vanishes on the basic semialgebraic set {f; = 0,g; > 0} if and only if
~F2™ e ideal(f;) + cone(gj) for m large enough.

- If AP =V Q is true, there exists an algebraic proof for it with rational coefficients.
(12]) A (12]3) = (13]) v (23]) is true and a proof is the polynomial identity
Y[13|]-X[23|] = £[3] - £[12|] - £[12|3].

The associated decision problem is the existential theory of the reals.
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Universality theorems

Theorem (B. 2021)

For every finite real extension K/Q there exists a Gaussian Cl model My such that:
for every L/Q, Mx has an L-rational point if and only if K c L.

— The answer to Simetek’s question is NO.

Theorem (B. 2021)

The problem of deciding whether a Cl inference formula is valid for all Gaussian distributions
is polynomial-time equivalent to the existential theory of the reals.
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Proof sketch

Integer Incidence Conditional
polynomials geometry independence
T —

Theorem

To every polynomial system {f; x 0} one can compute a polynomially-sized set of
Cl constraints which has a model over a real algebraic extension K/Q if and only
if the polynomial system has a solution in K. D
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(1) Algebra c Synthetic geometry

Point and line configuration for the equation
x*-2=0.

The configuration is specified by incidences between
points and lines and also the parallelities of lines.

It is realizable over Q(+/2) but not over Q. W\

Keyword for the general technique: von Staudt constructions (1857).
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(2) Synthetic geometry ¢ Gaussian Cl

Y[ij|] = xjj = impose xx = Xkm = Xim = 0 on a correlation matrix, then:
Y [ij|kim] = x; + XimXjmX 2 = XimXi — XiiX; + XXX
YIKIM | = Xij Xk X[1Xmm + XimXjmXi) = XimXjI Xkl Xkm = Xil XjmXkiXkm + Xil Xj1Xjcm
2
= XimXjmXkk Xl + XimXjk Xkm X1l + XikXjmXkmXil — Xij Xjcm X1
+ XimXjI XkkXim + XilXjmXkkXIm — XimXjkXkIXIm — XikXjmXkIXIm
2
= Xi1Xjk XkmXlm = Xik Xj1XkmXlIm + 2Xij Xk XkmXim + Xik Xjk Xjm
2
= XijXkkX|m = XilXjiXkkXmm + Xii XjkXkIXmm + XikXjIXk|Xmm
2
= Xij X1 Xmm = XikXjk X1 Xmm

Xik Xjk
=Xjj — Z XigXjt = Xjj — (;{i/ ), Xﬂ .
t=k,I,m m

Xjm
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Incidence relation in a Cl model

P1 Pn I Im X y z
b1 Py (p,p') o pi P pf
: . p, :

o | (P, P) Ph Py Pn P

h 0 (¢,0) 14 4
(¢, p)

I (o) o e

x Py Py & U 1 0 0

y P{ p%,’ g>1’ g{n 0 1 0

2 pi Py 1 G 0 0 1
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Approximations to the
inference problem




Approximations to the inference problem

Theorem (Matd$ 2005)

The following relations hold for every symmetric matrix ¥:

S[kL]-X[i|L] = S[L] - S[ij|kL] + S[ik|L] - S[jk|L].

These relations define essential geometric properties of symmetric matrices in principal
and almost-principal minor coordinates. Study their combinatorics!

>

Tobias Boege // The Gaussian Cl inference problem



The Gaussian CI configuration space

S[kL]- X[ij|L] = S[L] - S[ij|kL] + S[ik|L] - £[jk|L]

The Gaussian Cl configuration space 4 ¢ R?" x R()2"™

and almost-principal minors of ¥ € PD,,.

2 . . .
consists of all vectors of principal
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The Gaussian CI configuration space

S[kL]- X[ij|L] = S[L] - S[ij|kL] + S[ik|L] - £[jk|L]

The Gaussian Cl configuration space 4 ¢ R%" x R()2"? consists of all vectors of principal
and almost-principal minors of ¥ € PD,,.

Very wasteful encoding of a matrix, but this creates simple and useful relations on
configuration vectors. The Cl structure of ¥ is encoded in the zero pattern of c(X) € 9.
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Combinatorial compatibility
S[kL]- E[ij|L] = £[L]- Z[ij|kL] + Z[ik|L] - E[jk|L]

Combinatorial compatibility means fulfilling polynomial relations under uncertainty:
What if we only knew that all £[K] # 0 and whether or not X[ij|K] =0 for every (ij|K)?
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Combinatorial compatibility

S[kL]- £[ij|L] = £[L]- £[ij|kL] + Z[ik|L] - Z[jk|L]

Combinatorial compatibility means fulfilling polynomial relations under uncertainty:
What if we only knew that all X[K] # 0 and whether or not X[ij|K] =0 for every (ij|K)?

(GIL) A (ilkL) = (ik|L) v (KIL)
(ik|L) A (kL) = (4]L)
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Combinatorial compatibility

S[kL]-E[ij|L] = £[L]- S[ij|kL] + Z[ik|L] - Z[jk|L]

Combinatorial compatibility means fulfilling polynomial relations under uncertainty:
What if we only knew that all £[K] # 0 and whether or not X[ij|K] =0 for every (ij|K)?

(1) A (GlkL) = (ik|L) v (kIL)
(ikIL) A (ilkL) = (L) A (ikliL)
(GlkL) A GiKLL) = (L) A (ik|L)
(GIL) A~ GikIL) = (ijlkL) A (ik|iL)

This yields the definition of gaussoids. :
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Cl inference via SAT solvers

Since gaussoids have a finite axiomatization, a SAT solver like CaDiCaL can deduce
implications under the gaussoid axioms:

(12[3) A (12]34) A (24]1) A (34]2)
= (12]) A (12/4) A (24]) A (24]3) A (24]13) A (34])

These conclusions are valid for all regular Gaussian distributions.
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Oriented gaussoids

S[kL]- £[ij|L] = £[L]- £[ij|kL] + [ik|L] - £[jk|L]

What if we only knew that all sgn X[K] = +1 and the value of sgn X[ij|K] for every (ij|K)?
+(GIL) A =(GIkL) = [+(ik|L) A +(k|L)] v [=(ik|L) A =(k|L)]

— Oriented and orientable gaussoids.

>
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Oriented gaussoids

T[kL]- T[ij|L] = £[L]- £[ij|kL] + Z[ik|L] - £[jk|L]

What if we only knew that all sgn X[K] = +1 and the value of sgn X[ij|K] for every (ij|K)?
(1L A =(ilkL) = [+(IL) A +GHIL)] ¥ [=(IL) A =GiL)
— Oriented and orientable gaussoids.
(JIL) A (KIL) A (ikIL) A (jl|ikL) = (ik|L)
(JIL) A (KIiL) A (KkI|L) A (ij|kIL) = (kI|L)
(JIL) A GIKL) A (KI|iL) A (ik[IL) = (ik|L)
(Gi|KL) A (ik|IL) A (illiL) = (ij]L)
GIkL) A GKIIL) A GIL) A (KIL) = (L) D
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Cl inference via SAT solvers I

Using the gaussoid axioms, we find:

(12]) A (13]4) A (14]5) A (15]23) A (23]5) A (24[135) A (34|12) A (35]1) A (45]2)
= nothing.

The structure on the left is a gaussoid.

>
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Cl inference via SAT solvers I

Running the SAT solver CaDiCaL on the definition of oriented gaussoids confirms that
their supports satisfy

(12]) A (13|4) A (14]5) A (15]23) A (23]5) A (24]135) A (34]12) A (35]1) A (45)2)
= everything except (25|K) for all K.

The geometric model is that of a Markov network!
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The search for inference rules

Inference rules help characterize the realizable Cl structures:
e 3-variate: 11 out of 64 by Mati$ 2005.
® 4-variate: 629 out of 16777216 by Lnénicka and Matds 2007.

® b-variate: open! (out of 1208925819614 629174706176)

® 254826 gaussoids modulo symmetry
® 87834 of which are orientable gaussoids
® 84908 of which are selfadhesive orientable gaussoids.
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The search for inference rules

Inference rules help characterize the realizable Cl structures:

e 3-variate: 11 out of 64 by Mati$ 2005.

® 4-variate: 629 out of 16777216 by Lnénicka and Matds 2007.

® 5-variate: open! (out of 1208925819614 629174706 176)

® 254826 gaussoids modulo symmetry
® 87834 of which are orientable gaussoids
® 84908 of which are selfadhesive orientable gaussoids.

Help wanted:
® Use information inequalities and linear programming.
® Tropical approximations and valuated gaussoids.
e Compute algebraic realization spaces.
® Find and certify real solutions to polynomial systems.
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Proof sketch
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Proof sketch

Integer Incidence Conditional
polynomials geometry independence
T —

Theorem

To every polynomial system {f; x 0} one can compute a polynomially-sized set of
Cl constraints which has a model over a real algebraic extension K/Q if and only
if the polynomial system has a solution in K. D
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(1) Algebra c Synthetic geometry

Point and line configuration for the equation
x?-2=0.

The configuration is specified by incidences between
points and lines and also the parallelities of lines.

It is realizable over Q(+/2) but not over Q. M
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Von Staudt constructions

0 Xy 0 1 x vy

Addition Multiplication
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Von Staudt constructions
!
X
I

Addition Multiplication

y 0 1Xy
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Von Staudt constructions

[
0 Xy 0 1 x vy
|

Addition Multiplication
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Von Staudt constructions

N

|
0 Xy X+y 0 I xy
I

~ ]

Addition Multiplication
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Von Staudt constructions

\ \
l 0 1
o T : SN

Addition Multiplication
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Von Staudt constructions

N

[
0 Xy X+y 0 1 X;}\
] ! ~ ] AN

Addition Multiplication

>

Tobias Boege // The Gaussian Cl inference problem



Von Staudt constructions

N

1 x }\x-y
N\

~

I
0 Xy X+y
I

~ ]

Addition Multiplication
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The cube root of 4

N




(2) Synthetic geometry ¢ Gaussian Cl

Y[ij|] = xjj = impose xx = Xkm = Xim = 0 on a correlation matrix, then:
Y [ij|kim] = x; + XimXjmX 2 = XimXi — XiiX; + XXX
YIKIM | = Xij Xk X[1Xmm + XimXjmXi) = XimXjI Xkl Xkm = Xil XjmXkiXkm + Xil Xj1Xjcm
2
= XimXjmXkk Xl + XimXjk Xkm X1l + XikXjmXkmXil — Xij Xjcm X1
+ XimXjI XkkXim + XilXjmXkkXIm — XimXjkXkIXIm — XikXjmXkIXIm
2
= Xi1Xjk XkmXlm = Xik Xj1XkmXlIm + 2Xij Xk XkmXim + Xik Xjk Xjm
2
= XijXkkX|m = XilXjiXkkXmm + Xii XjkXkIXmm + XikXjIXk|Xmm

2
= Xij X1 Xmm = XikXjk X1 Xmm
Xik Xjk
=Xj= > XXk = Xr((xx,;'")a(xf" ))
k=k,I,m

>
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(2) Synthetic geometry ¢ Gaussian Cl

Z[I_j|k/m] =0 & Z,’j = <Zi,klmazj,klm>

< Yim L X km
T[] =0 < ¥;=0 } B
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(2) Synthetic geometry ¢ Gaussian Cl

Y[ijlkim] =0 < X =(%; kim, X;
[J| ] 5= im0} < Yikm L X kim
Y[ij|]]=0 & X;=0
P=Xikm=[Px:py:Pz] and £ =% m = [lx: €y : L]
are the homogeneous coordinates of a point and a line
in the projective plane with p e /4.
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(2) Synthetic geometry ¢ Gaussian Cl

S [ijlkim] =0 < 55 = () iy X ki) ' et
ilkiml =0 < Y= (X .

1 P L é
p= Z/'J(lm = [px “Py - pz] and / = Zj,k/m = [EX : gy :Ez] N
are the homogeneous coordinates of a point and a line E— 7 5 .
in the projective plane with p e /4.

1
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Incidence relation in a Cl model

P1 Pn I Im X y z
b1 Py (p,p') o pi P pf
: . p, :

o | (P, P) Ph Py Pn P

h 0 (¢,0) 14 4
(¢, p)

I (o) o e

x Py Py & U 1 0 0

y P{ p%,’ g>1’ g{n 0 1 0

2 pi Py 1 G 0 0 1
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