Laws of conditional independence

Tobias Boege

MPI-MiS

VISTA seminar on Reusability of Research Data Across Mathematics, University of Leipzig, 5 May 2022

Conditional independence $X \perp\!\!\!\perp Y \mid Z$

"When does knowing Z make X irrelevant for Y?"

Example: Two independent fair coins c_1 and c_2 are wired to a bell b which rings if and only if $c_1 = c_2$.

- $ightharpoonup [c_1 \perp \!\!\! \perp c_2]$
- $ightharpoonup [c_1 \not \perp c_2 \mid b] \dots$

Question: When can we conclude from some independences other independences? E.g., is it possible that $[c_1 \perp b \mid c_2]$?

Laws of conditional independence

Not possible!

$$[X \perp\!\!\!\perp Y] \wedge [X \perp\!\!\!\perp Z \mid Y] \Rightarrow [X \perp\!\!\!\perp Y \mid Z]$$

is a law of conditional independence (valid for all distributions).

Goal: Find all such laws. Equivalently find all patterns of conditional independence statements that can simultaneously occur ("models").

► The model of coins-and-bell is

$$[c_1 \perp \!\!\! \perp c_2] \wedge [c_1 \perp \!\!\! \perp b] \wedge [c_2 \perp \!\!\! \perp b] \wedge [c_1 \not \perp c_2 \mid b] \wedge [c_1 \not \perp b \mid c_2] \wedge [c_2 \not \perp b \mid c_1].$$

Classification of models on 4 random variables

Matúš-Studený (1995–1999): 1098 models of discrete distributions.

Šimeček (2006): 80 models for general Gaussian distributions.

Lněnička-Matúš (2007): 53 models for regular Gaussian distributions.

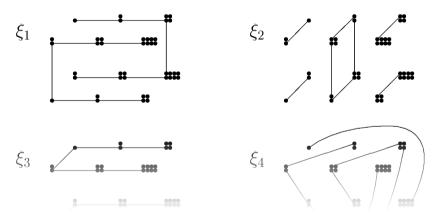
Matúš (2018): "[...] even when N has four elements a solution is far from trivial [...] and the bin and bin⁺-representability remain open."

Research data: Proof schemes

The whole proof will consist of ten schemes of the above form.

F. Matúš (1995): Conditional independences among four random variables II.

Research data: Counterexamples



F. Matúš (1995): Conditional independences among four random variables III.

Research data: Counterexamples

Model M1	Model M2	Model M3	Model M4	Model M5	Model M6
e 4 0 2 -2	4 1 -3 2	4 -3 -3 -3	4 0 1 -1	4 0 2 -2	4 0 3 -2
0 4 1 -3	1 4 -3 2		0 4 1 1	0 4 2 -3	0 4 2 -3
2 1 4 -3			1 1 4 1		
e e -2 -3 -3 4		⊕ -3 2 1 4	e e-1114	● e [/] -2 -3 -3 4	-2 -3 -3 4
Model M7	Model M8	Model M9	Model M10	Model M11	Model M12
e 4 0 -2 2	4 1 - 2 2	4 2 -3 3	4 1 - 2 2	9 4 0 -3 -3	· 4 0 -2 1
0 4 - 3 1	1 4 -3 2	2 4 -3 1	1 4 -3 2		
-2 -3 4 -1	-2 -3 4 -1	-3 -3 4 -2	-2 -3 4 -2	1 -3 1 4 2	-2 -3 4 0
e 2 1 -1 4	e 2 2 -1 4	3 1 -2 4	2 2 - 2 4	• -3 2 2 4	e 1-2 0 4
Model M13	Model M14	Model M15	Model M16	Model M17	Model M18
Model M13			Model M16 4 0 2 -1	_	_
	0 4 1 2 -2	6 1 -4 2	4 0 2 -1 0 4 2 -3	4 0 -2 1 0 4 -3 2	4 0 -2 2
0 	4 1 2 -2 1 4 -1 -2	6 1 -4 2 1 6 -5 3	4 0 2 -1 0 4 2 -3	4 0 -2 1 0 4 -3 2	4 0 -2 2 0 4 -3 -1
4-1 2-2	4 1 2 -2 1 4 -1 -2 2 -1 4 -2	6 1 -4 2 1 6 -5 3 -4 -5 6 -3	4 0 2 -1 0 4 2 -3 2 2 4 -3	4 0 -2 1 0 4 -3 2 -2 -3 4 -2	4 0 -2 2 0 4 -3 -1 -2 -3 4 -1
4-1 2-2 -1 4-2 2 2-2 4-3	4 1 2 -2 1 4 -1 -2 2 -1 4 -2	6 1 -4 2 1 6 -5 3 -4 -5 6 -3	4 0 2 -1 0 4 2 -3 2 2 4 -3	4 0 -2 1 0 4 -3 2 -2 -3 4 -2	4 0 -2 2 0 4 -3 -1 -2 -3 4 -1
4 -1 2 -2 -1 4 -2 2 2 -2 4 -3 e -2 2 -3 4	4 1 2 -2 1 4 -1 -2 2 -1 4 -2 8 -2 -2 -2 4	6 1 -4 2 1 6 -5 3 -4 -5 6 -3 2 3 -3 6	4 0 2 -1 0 4 2 -3 2 2 4 -3 -1 -3 -3 4	4 0 -2 1 0 4 -3 2 -2 -3 4 -2 1 2 -2 4	4 0 -2 2 0 4 -3 -1 -2 -3 4 -1 2 -1 -1 4 Model M24
4 -1 2 -2 -1 4 -2 2 2 -2 4 -3 0 0 -2 2 -3 4	4 1 2 -2 1 4 -1 -2 2 -1 4 -2 2 -2 -2 -2 4 Model M20 4 0 -2 -3	6 1 -4 2 1 6 -5 3 -4 -5 6 -3 2 3 -3 6 Model M21 4 0 -2 2	# 0 2 -1 0 4 2 -3 2 2 4 -3 -1 -3 -3 4 Model MZZ # 4 0 -2 2 0 4 -2 2	4 0 -2 1 0 4 -3 2 -2 -3 4 -2 1 2 -2 4 Model M23	4 0 -2 2 0 4 -3 -1 -2 -3 4 -1 2 -1 -1 4 Model M24
4-1 2-2 -1 4-2 2 2-2 4-3 e -2 2-3 4 Model M19 e 4 0 2-2	4 1 2 -2 1 4 -1 -2 2 -1 4 -2 2 -2 -2 -2 4 Model M20 4 0 -2 -3 0 4 2 -1	6 1 -4 2 1 6 -5 3 -4 -5 6 -3 2 3 -3 6 Model M21 4 0 -2 2 0 4 -2 -2	# 0 2 -1 0 4 2 -3 2 2 4 -3 -1 -3 -3 4 Model MZZ # 4 0 -2 2 0 4 -2 2	4 0 -2 1 0 4 -3 2 -2 -3 4 -2 1 2 -2 4 Model M23	4 0 -2 2 0 4 -3 -1 -2 -3 4 -1 2 -1 -1 4 Model M24 6 0 -3 1

P. Šimeček (2006): Gaussian Representation of Independence Models over Four Random Variables.

Research data: Counterexamples

\underline{i}	$A^{(i)}$	i	$A^{(i)}$	i	$A^{(i)}$	i	$A^{(i)}$
1	$ \begin{pmatrix} 1 & \varepsilon & \varepsilon & \varepsilon^2 \\ \varepsilon & 1 & 0 & \varepsilon \\ \varepsilon & 0 & 1 & 0 \\ \varepsilon^2 & \varepsilon & 0 & 1 \end{pmatrix} $	2	$ \begin{pmatrix} 1 & \varepsilon & \varepsilon & \varepsilon \\ \varepsilon & 1 & 0 & \varepsilon^2 \\ \varepsilon & 0 & 1 & 0 \\ \varepsilon & \varepsilon^2 & 0 & 1 \end{pmatrix} $	3	$\begin{pmatrix} 1 & \varepsilon & \varepsilon & 1 - \varepsilon^2 \\ \varepsilon & 1 & 0 & \varepsilon \\ \varepsilon & 0 & 1 & 0 \\ 1 - \varepsilon^2 & \varepsilon & 0 & 1 \end{pmatrix}$	4	$ \begin{pmatrix} 1 & 1 - \varepsilon^2 & \varepsilon^2 & 0 \\ 1 - \varepsilon^2 & 1 & 0 & \varepsilon \\ \varepsilon^2 & 0 & 1 & -\varepsilon \\ 0 & \varepsilon & -\varepsilon & 1 \end{pmatrix} $
6	$ \begin{pmatrix} 1 & \varepsilon^2 & \varepsilon^2 & 0 \\ \varepsilon^2 & 1 & 0 & \varepsilon \\ \varepsilon^2 & 0 & 1 & -\varepsilon \\ 0 & \varepsilon & -\varepsilon & 1 \end{pmatrix} $	7	$ \begin{pmatrix} 1 & \varepsilon & \varepsilon & 0 \\ \varepsilon & 1 & 0 & \varepsilon \\ \varepsilon & 0 & 1 & -\varepsilon \\ 0 & \varepsilon & -\varepsilon & 1 \end{pmatrix} $	8	$\begin{pmatrix} 1 & \varepsilon & \varepsilon^2 & \varepsilon \\ \varepsilon & 1 & 0 & \varepsilon \\ \varepsilon^2 & 0 & 1 & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & 1 \end{pmatrix}$	9	$ \begin{pmatrix} 1 & \varepsilon & \varepsilon & \varepsilon^{2} \\ \varepsilon & 1 & 0 & \varepsilon^{2} \\ \varepsilon & 0 & 1 & \varepsilon \\ \varepsilon^{2} & \varepsilon^{2} & \varepsilon & 1 \end{pmatrix} $
	$/1 \varepsilon \varepsilon^2 \varepsilon$		$/1 \varepsilon \varepsilon^3 \varepsilon^2 \setminus$		$/1 \varepsilon \varepsilon \varepsilon^2 \setminus$		/1 -ε ε ε \

R. Lněnička & F. Matúš (2007): On Gaussian conditional independence structures.

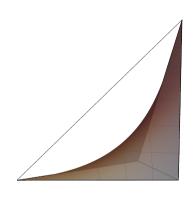
Machine-readable research data 2007 – today

```
http://web.archive.org/web/20070720064410/http://atrey.karlin.mff.cuni.cz/~simecek/skola/models/
```

- ▶ Data meanwhile deleted from institute website.
- ► GNU Pascal compiler for his programs hard to obtain.
- ▶ Source code comments in Czech.
- ► Hardly documented compiler-specific floating point data format.

```
→ https://github.com/taboege/simecek-tools
```

Conditional independence models are semialgebraic sets



The set of all distributions of two independent binary random variables (X, Y) is a surface in the probability simplex defined by

$$P(X = 0, Y = 0) \cdot P(X = 1, Y = 1) =$$

 $P(X = 0, Y = 1) \cdot P(X = 1, Y = 0).$

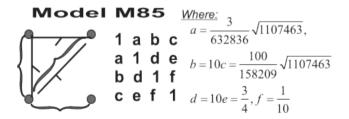
$$[X \perp Y] \Leftrightarrow p_{00} \cdot p_{11} = p_{01} \cdot p_{10},$$

not forgetting $p_{ij} \ge 0, \quad \sum p_{ij} = 1.$

Proofs and refutations on the computer

Theorem (Tarski's transfer principle)

If an inference rule is wrong, there exists a counterexample to it with real algebraic probabilities.



Proofs and refutations on the computer

Theorem (Positivstellensatz)

If an inference rule is correct, there exists a proof of it in the form of a single polynomial identity with integer coefficients (called a final polynomial).

$$[X \perp\!\!\!\perp Y] \wedge [X \perp\!\!\!\perp Y | Z] \Rightarrow [X \perp\!\!\!\perp Z] \vee [Y \perp\!\!\!\perp Z] ?$$

$$[X \perp\!\!\!\perp Y] \wedge [X \perp\!\!\!\perp Y \mid Z] \Rightarrow [X \perp\!\!\!\perp Z] \vee [Y \perp\!\!\!\perp Z]$$

$$[X \perp\!\!\!\perp Z] \cdot [Y \perp\!\!\!\perp Z] =$$

$$\left(p_{000}p_{001} + p_{001}p_{010} + p_{000}p_{011} + p_{010}p_{011} + p_{001}p_{100} + p_{011}p_{100} + p_{000}p_{101} + p_{010}p_{101} + p_{010}p_{101} + p_{010}p_{101} + p_{010}p_{101} + p_{010}p_{111} + p_{100}p_{111} + p_{100}p_{111} + p_{110}p_{111} \right) \cdot \begin{bmatrix} X \perp \!\!\! \perp \!\!\! Y \end{bmatrix} - \\ \left(p_{000}p_{001} + p_{001}^2 + p_{001}p_{010} + p_{000}p_{011} + 2p_{001}p_{011} + p_{010}p_{011} + p_{011}p_{100} + p_{011}p_{100} + p_{010}p_{100} + p_{000}p_{101} + p_{000}p_{101} + p_{010}p_{101} + p_{010}p_{101} + p_{010}p_{101} + p_{010}p_{101} + p_{010}p_{111} + 2p_{011}p_{111} + p_{100}p_{111} + 2p_{101}p_{111} + p_{100}p_{111} + p_{110}p_{111} + p_{110}p_{111} + p_{110}p_{111} + p_{100}p_{100} + p_{001}p_{100} + p_{001}p_{100} + p_{001}p_{100} + p_{001}p_{100} + p_{000}p_{100} + p_{001}p_{100} + p_{010}p_{100} + p_{010}p_{110} + p_{010$$

Proofs and refutations on the computer

Theorem (Tarski's transfer principle)

If an inference rule is wrong, there exists a counterexample to it with real algebraic probabilities.

Theorem (Positivstellensatz)

If an inference rule is correct, there exists a proof of it in the form of a single polynomial identity with integer coefficients (called a final polynomial).

Both are exactly representable on a computer and verifiable by off-the-shelf computer algebra systems!