WISST! Galois connections

A partial order on a set X is a relation \leq which satisfies

$$x \le x,$$
 (Reflexivity)
 $x \le x' \land x' \le x'' \Rightarrow x \le x'',$ (Transitivity)
 $x \le x' \land x' \le x \Rightarrow x = x'.$ (Antisymmetry)

A partially ordered set in which each subset A has a least upper bound $\bigvee A$ and a greatest lower bound $\bigwedge A$ is a complete lattice.

Galois connections

A closure operator on (X, \leq) is a function $\mathfrak{c}: X \to X$ with

$$\mathfrak{c}(x) \geq x,$$
 (Extensivity) $x \leq x' \Rightarrow \mathfrak{c}(x) \leq \mathfrak{c}(x'),$ (Monotonicity) $\mathfrak{c}(\mathfrak{c}(x)) = \mathfrak{c}(x).$ (Idempotency)

A Galois connection between (X, \leq) and (Y, \leq) is a pair of antitone maps $\alpha: X \to Y$ and $\beta: Y \to X$ such that $\beta\alpha$ and $\alpha\beta$ are closure operators on X and Y, respectively.

- Every topology is defined by a closure operator.
- The closed sets form a complete lattice.
- ▶ Between the closed sets of *X* and *Y*, the Galois connection establishes a *lattice antiisomorphism*.

Formal concept analysis

Let \mathcal{O} be a set of *objects* and \mathcal{A} a set of *attributes* with an *incidence* relation \diamond . This defines a Galois connection between the powersets of \mathcal{O} and \mathcal{A} :

$$\alpha(O) := \{ a \in \mathcal{A} : o \diamond a \ \forall o \in O \},$$
$$\beta(A) := \{ o \in \mathcal{O} : o \diamond a \ \forall a \in A \}.$$

The closure operator $\beta\alpha$ saturates a set of objects O with respect to all of its attributes.

The other closure operator $\alpha\beta$ infers all attributes which are implied on $\mathcal O$ by a set of attributes A.

Example: Galois theory

Let L/F be a finite field extension with G = Aut(L/F). Then the maps

$$L/K/F \longleftrightarrow 1 \leq H \leq G$$
,

given by "fixgroup" and "fixed field" are a Galois connection between intermediate fields in L/F and subgroups of G.

If L/F is Galois, then the Fundamental theorem of Galois theory shows that every intermediate field and every subgroup is closed with respect to the connection.

This connection is defined by the relation $x \diamond g : \Leftrightarrow g(x) = x$.

Example: Algebraic geometry

For \mathbb{K} algebraically closed, consider the relation

$$a \diamond f :\Leftrightarrow f(a) = 0$$

on \mathbb{K}^n (objects) and $\mathbb{K}[x_1,\ldots,x_n]$ (attributes).

The closed object sets are the algebraic varieties and the closed attribute sets are the radical ideals, by Hilbert's Nullstellensatz.

Example: Convex geometry

Between \mathbb{R}^n and $(\mathbb{R}^n)^*$ define

$$x \diamond \alpha :\Leftrightarrow \alpha(x) \geq 0.$$

This gives a Galois connection whose closed object sets are the closed convex cones, by the separation lemma of convex sets.

The dual closed sets are closed convex cones as well, in $(\mathbb{R}^n)^*$. The Galois connection constructs the *dual cone* in both directions.

Example #4

Let $K = \{ g_i \ge 0 \}$ be a semialgebraic set. Consider the following relation between subsets of K and subets of $\{ g_i \}$:

$$x \diamond g :\Leftrightarrow g(x) = 0.$$

What is the name of this construction? If \mathcal{K} is a polyhedron, then its closed subsets form the *face lattice*.