WISST! The Lefschetz principle

or: What is... quantifier elimination?

Given polynomials f_1, \ldots, f_r and $g_1, \ldots, g_s \in \mathbb{Z}[x_1, \ldots, x_n]$ study the solvability of the system

$$f_i = 0, i \in [r],$$

$$g_j \neq 0, j \in [s],$$
(\equiv)

over varying fields \mathbb{K} .algebraically closed fields \mathbb{K} .

Note: the \mathbb{Z} coefficients make sense in every field \mathbb{K} by interpreting $k \in \mathbb{Z}$ as $\underbrace{1+1+\cdots+1}_{} \in \mathbb{K}$.

The Lefschetz principle

- 1. The answer to (\exists) depends only on the characteristic of the field. If a solution exists over \mathbb{K} , then also over $\overline{\mathbb{K}'}$ (i.e. $\overline{\mathbb{Q}}$ or $\overline{\mathbb{F}_p}$).
- 2. If (\exists) has a solution in characteristic 0, then it has a solution over characteristic p > 0 for all but finitely many primes p.
- 3. In particular if (\exists) has a solution over \mathbb{C} , it has a solution in finite fields \mathbb{F}_{p^m} for all but finitely many primes p.
- 4. The set of characteristics over which (\exists) has a solution can be effectively computed from the defining polynomials f_i and g_j .

Polynomial systems and Model theory

Model theory studies "models": mathematical objects interpreting symbols of a formal language and satisfying axioms written in that language as well as the theory of a given model, i.e. all formulas in the language which are true in this model.

(First-order) language of rings:

- constants 0 and 1
- \blacktriangleright functions +, -, \cdot
- relations =
- ▶ Boolean logic connectives \land , \lor , \neg (\Rightarrow , \Leftrightarrow , ...)
- ∃ and ∀ quantifiers
- \triangleright variables x_1, x_2, \ldots

Formulas, axioms and definability

The definition of a ring can be written in the language of rings:

- $\triangleright \forall a: a-a=0$
- $\forall a, b, c : (a + b) + c = a + (b + c)$
- $\triangleright \forall a, b : a + b = b + a$

A field is a commutative ring with inverses:

- $ightharpoonup \forall a \exists b : \neg (a = 0) \Rightarrow ab = 1$
- (\exists) is expressible as a sentence in this language:

$$\exists x_1,\ldots,x_n: \bigwedge_{i=1}^r f_i(x_1,\ldots,x_n) = 0 \land \bigwedge_{i=1}^s \neg(g_i(x_1,\ldots,x_n) = 0)$$

Quantifier elimination

The theory of algebraically closed fields admits quantifier elimination in the language of rings. That is, for each formula φ there exists an equivalent formula ψ without \exists or \forall quantifiers, such that for every algebraically closed field \mathbb{K} :

$$\mathbb{K} \models \varphi \iff \mathbb{K} \models \psi.$$

Eliminating quantifiers (and hence all variables) from (\exists) results in a Boolean combination of (in)equations n = m for some $n, m \in \mathbb{Z}$.

These inequalities point out exactly which characteristics are required and which are ruled out for having a solution to (\exists) .