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Review of commutative algebra

This appendix collects definitions and results from basic algebraic geometry which will
be freely referenced in the course. In some cases being familiar with them is required to
follow the lecture; in other cases they are used to illustrate how real algebraic geometry
differs from its complex counterpart. Many texts on commutative algebra may be
consulted for proofs and more details. For example, [DF04] is a comprehensive resource.

Ring and field. A ring R in this course will always be commutative and come with
a multiplicative unit 1. A unit in R is an element which has a multiplicative inverse
and if every non-zero element is a unit, then R is a field. An element a ∈ R \ { 0 } is
a zero divisor if there is a b ∈ R \ { 0 } such that a · b = 0. It is nilpotent if b can be
chosen as a power of a. No unit can be a zero divisor.

Characteristic and prime field. The presence of 1R lets us define a canonical ring
homomorphism Z→ R which sends 1Z to 1R. If this homomorphism is injective, then
R is said to have characteristic 0. Otherwise there is a smallest positive integer d
whose image under this homomorphism is 0R and this integer is then the characteristic
of R. The characteristic of a field is either 0 or a prime. There is a unique smallest
field inside every field which is its prime field. There is precisely one prime field per
characteristic: Fp for prime characteristic p > 0 and Q in case of characteristic zero.

Fraction field. If R has no zero divisors, then it is an integral domain. In this case,
we may define its fraction field ff(R). This is a ring whose elements are the classes of
formal fractions a/b with a, b ∈ R and b 6= 0 modulo the equivalence relation

a

b
∼ c

d
:⇔ ad = bc.

Addition and multiplication are defined as usual for fractions. Since every non-zero
element a/b has an inverse b/a, ff(R) is a field and we have a canonical ring embedding
R ↪→ ff(R) via a 7→ a/1.

Field extension and algebraic closure. Two fields in inclusion F ⊆ F′ form a
field extension. This is also written as F′/F. If a ∈ F′ is a root of some polynomial
0 6= f ∈ F[x], then a is algebraic over F; otherwise it is transcendental. If a is algebraic,
then among all polynomials f of which a is a root, there is a unique monic and
irreducible one which is the minimal polynomial of a over F. Any extension F′ is also a
vector space over F whose dimension is the extension degree. The algebraic extension
F(a) is finite and its degree is the degree of the minimal polynomial of a.
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Theorem A.1: Primitive element theorem. Let F be a perfect field. Then every
finite extension F′/F has a primitive element, i.e., a ∈ F′ such that F′ = F(a).

A field is perfect if it has characteristic zero (which is the case relevant in this
course) or if has characteristic p and every element is a pth root.

A field is algebraically closed if it has no proper algebraic extension. An algebraically
closed and algebraic extension of a field F is an algebraic closure.

Theorem A.2: Algebraic closure. Every field F has an algebraic closure. The
algebraic closure is unique up to unique F-isomorphism.

The proof of this theorem requires a useful lemma from poset theory:

Zorn’s lemma. Let (P,≤) be a poset in which every chain has an upper bound. Then
(P,≤) has a maximal element.

Ideal and variety. A set { 0 } ⊆ I ⊆ R is an ideal if I+ I ⊆ I and R · I ⊆ I where
the operations are performed pairwise for all the elements of either set. Notice how
ideals generalize the notion of “zero” in a ring. The quotient structure R/I consisting
of all cosets of I in R has again a well-defined ring structure.

Theorem A.3: Homomorphism theorem. Let ϕ : R → R′ be a ring homomor-
phism. Then I = kerϕ is an ideal in R and we have R/I ∼= imϕ.

For every ideal I in R we have the canonical homomorphism R→ R/I whose kernel
is exactly I. Hence, ideals are nothing but kernels of ring homomorphisms.

A ring is noetherian if every chain of ideals eventually stabilizes. This ensures that
every ideal is finitely generated.

Theorem A.4: Hilbert’s basis theorem. A polynomial ring over a noetherian ring
is noetherian. In particular, every ideal in F[x1, . . . , xn] is finitely generated.

To an ideal I ⊆ F[x1, . . . , xn] we associate the variety

V(I) := { a ∈ Fn : f(a) = 0 for all f ∈ I } .

Conversely, the vanishing ideal of any subset of V ⊆ Fn is

I(V ) := { f ∈ F[x1, . . . , xn] : f(a) = 0 for all a ∈ V } .

Theorem A.5: Hilbert’s Nullstellensatz. Let F be algebraically closed and I an
ideal in F[x1, . . . , xn]. Then I(V(I)) =

√
I := { f ∈ F[x1, . . . , xn] : ∃m ≥ 0 : fm ∈ I }.

The ideal
√
I appearing in this theorem is the radical of I. It can be formed by

apply I(V(−)) to an ideal. The operation V(I(−)) applied to a subset V ⊆ Fn is
referred to as Zariski closure and further explained below.

Theorem A.6: Alternatives in algebraic geometry. Let F be any field and
fi, gj ∈ F[x1, . . . , xn]. Then exactly one of the following two cases occurs:
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(a) There exists a point a ∈ acl(F)n with fi(a) = 0 and gj(a) 6= 0 for
all i and j.

(b) There exist hi ∈ F[x1, . . . , xn] andm ≥ 0 such that
∑

i fihi =
(∏

j gj

)m
.

The condition (b) in the above theorem is equivalent to 0 ∈ I+U, i.e., the element-
wise sum of the ideal I generated by the fi and the multiplicative monoid U generated
by the gj in F[x1, . . . , xn]. However, 0 ∈ I + U is absurd when the solution space is
non-empty, for every point in the solution space evaluates to zero on every element of
I and to non-zero on every element of U. This shows that either there exists a point
in the solution set of the polynomial system all of whose coordinates are algebraic
numbers over F or there exists an algebraic proof of the unsolvability of the system in
the form of a polynomial in I ∩ U which has coefficients in F.

Irreducible variety. The varieties in Fn form the closed sets of the Zariski topology.
Every closed set has an essentially unique decomposition has a union of irreducible
varieties. A variety is irreducible if and only if its vanishing ideal I is prime, i.e.,
whenever ab ∈ I already a ∈ I or b ∈ I. Clearly, I is prime if and only if R/I is an
integral domain. The dimension if an irreducible variety is the maximal length of a
chain of irreducible varieties inside it. For a reducible variety, the dimension is the
maximum over its irreducible components.




