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Concepts from model theory

Model theory is a branch of mathematical logic which investigates the structure behind
collections of mathematical objects satisfying a given set of axioms. Its main feature is
that the language — the distinguished elements, functions and relations — which can
be used in talking about these objects is rigorously restricted. Since at the core they
both share a finitary, symbolic approach, algebra and model theory enjoy a synergy
which becomes especially visible in (real) algebraic geometry. This exposition of the
basic terminology from model theory closely follows [Mar02].

Language and formula. A language L consists of three parts: (1) a set of function
symbols F , each f ∈ F with a certain arity nf , (2) a set of relation symbols R, each
R ∈ R with a certain arity nR, and (3) a set of constant symbols C. The language of
rings Lr has two binary function symbols + and ·, no distinguished relation and two
constants 0 and 1. The language of ordered rings Lor extends Lr by a binary relation
symbol <. Note that we do not include the equality relation = at this point because it
is part of the definition of formulas below.

Given a language L = (F ,R, C) the set of L-terms is defined recursively: (1) every
c ∈ C is a term, (2) we allow an unbounded number of variable symbols vi, which are
terms, or (3) for f ∈ F and terms t1, . . . , tnf

, the formal expression f(t1, . . . , tnf
) is a

term. Terms are expressions thought of having “values” in our domain of discourse.
From the terms, we define L-formulas recursively as well. An atomic L-formula is:
(1) t1 = t2 for two terms, or (2) R(t1, . . . , tnR

) for R ∈ R. These are the possible
ways of turning terms into truth values given our language. An L-formula is then any
boolean combination using operations ¬, ∧ and ∨ of atomic L-formulas or quantified
L-formulas ∃vi : φ or ∀vi : φ. The free variables of a formula are also defined recursively.
All variables appearing in a term and an atomic formula are free. Under boolean
connectives, sets of free variables are joined. The quantifiers ∃vi and ∀vi bind the
variable vi and remove it from the free variables of the quantified subformula. A formula
without free variables is a sentence.

By renaming variables we can always avoid confusing edge cases where the same
variable name appears both quantified and unquantified in the same formula, for
example v1 > 0 ∨ ∃v1 : v1 = v2 has free variables { v1, v2 } even though v1 also appears
as a different variable bound to the existential quantifier on the right-hand side of
the disjunction. We emphasize that terms and formulas are mere strings, i.e., formal
objects without any inherent meaning. In particular the terms 1 + 0, 0 + 1 and 1 in
the language of rings are regarded as different.
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Structure and theory. Meaning is created by interpreting terms and formulas inside
of an L-structure. An L-structureM consists of a set M , a function fM :Mnf →M
for each function symbol f ∈ F , a relation RM ⊆MnR for each relation symbol R ∈ R,
and a constant cM ∈ M for each constant symbol c ∈ C. From the way terms and
formulas have been defined, it is clear how to interpret them in a given structure by
recursive substitution. Terms are M -valued expressions and hence they can be viewed
as functions Mk → M where k is the number of variables appearing in the term;
formulas make boolean assertions about relations of elements from M . It is important
to note that quantifiers only range over elements ofM . We cannot express the existence
of an arbitrary subset, function or relation on M , for example. This restriction may be
lifted by introducing additional quantifier symbols leading to higher-order logics, but
we will not do so here. Instead, we remain in first-order logic where quantifiers range
only over elements of the domain.

A sentence φ in language L has a truth value in every L-structureM. If this value
is true, thenM satisfies φ, or equivalently φ is true inM, and we writeM |= φ. For
a general formula φ, the truth value depends on the values assigned to its free variables
vi1 , . . . , vik . We therefore view the formula as a function φ(vi1 , . . . , vik) and for each
k-tuple a ∈Mk we obtain a sentence φ(a) with a well-defined truth value. This formula
satisfiable in M if M |= ∃vi1 , . . . , vik : φ and tautological if M |= ∀vi1 , . . . , vik : φ.
The short summary of these definitions is that everything is exactly as a trained
mathematician would expect it to be. We will usually be more lax with the notation,
using for example p⇒ q as an abbreviation of ¬p ∨ q, place parentheses only where
necessary and write +(1, 1) in the customary fashion as 1 + 1.

So far anything can be an L-structure. Even if we name the function symbols
suggestively + and · and the constants 0 and 1, their interpretation in an L-structure
does not have to conform with any requirements except the arity of functions and
relations. To impose requirements, we write them down as L-sentences and treat them
as axioms. The axioms of rings can be written down as a finite collection A of Lr-
sentences then the Lr-structuresM which satisfy every sentence in A, writtenM |= A,
are the models of A — they must be rings. Conversely, given an L-structureM, we
obtain the collection Th(L) of all L-sentences true inM which is the theory ofM.

An L-theory is any set of L-sentences A. We can consider the enlarged set A
containing all sentences φ such that M |= φ for all models M of A. These φ are
consequences of A and we write A |= φ. A theory is sound if does not contain φ and
¬φ for any sentence φ. It is complete if it contains at least one of the two.

For example, the Lr-sentence ∀x, y : (xy = 0⇒ x = 0 ∨ y = 0) forbids zero divisors
in a ring and adding ∀x : x = 0 ∨ ∃y : xy = 1 to the ring axioms axiomatizes fields.
Algebraically closed fields are then axiomatized by adding countably infinitely many
Lr-sentences, one for each degree that a polynomial can have:

∀a0, . . . , an∃x : anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0.

In this expression we use many convenient abbreviations like xn from mathematical
practise which are not covered by our definition of Lr-formula, but of course all these
abbreviations can be expanded for each fixed n.
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Definability. Let L be a language and M an L-structure. A subset X ⊆ Mn is
definable if there is an L-formula φ(v1, . . . , vn, w1, . . . , wm) with free variables v1, . . . , vn
and w1, . . . , wm and a choice b ∈Mm such that

X = { a ∈Mn :M |= φ(a, b) } .

To emphasize that b comes from a certain subset B ⊆ M , we also say that X is
B-definable inM.

Everything we can talk about — the axioms used to specify our class of models,
the facts expressible about models and the formulas defining subsets — is restricted by
the chosen language L. The same structure may be studied in different languages, for
example R may be studied as a field or as an ordered field or as an ordered commutative
group. In the language of (ordered) rings and after imposing the ring axioms, every
term is equivalent to a polynomial with integer coefficients. Hence, the sets definable in
Lr over a field using atomic formulas are varieties. The quantifier-free definable sets are
finite unions and intersections of varieties or their complements. Over an algebraically
closed field, these are in fact all the definable sets and they are called constructible sets
in algebraic geometry.

Quantifier elimination. Since R is real-closed and by Corollary 1.17 the formulas
x > 0 and ∃y : y2x = 1 define the same set of positive elements of R. One of them is
formulated in the sublanguage of rings but requires a quantifier while the other uses
the language of ordered rings and is quantifier-free. A crucial question in model theory
is whether a theory admits such an “elimination of quantifiers”: can every first-order
definable set be defined by quantifier-free formulas?

An L-theory A has quantifier elimination if for every L-formula φ there exists a
quantifier-free L-formula ψ such that A |= φ⇔ ψ. In particular, this property makes all
definable sets quantifier-free definable. Quantifier elimination has desirable algorithmic
consequences: the naïve approach to deciding whether a given formula is satisfiable
is to iterate over all elements of the domain to check if plugging them in makes the
formula true. This algorithm is successful (but inefficient) if the domain is finite, it may
not terminate if the domain is countably infinite (recursively enumerable to be precise)
and it is not sensible if the domain is uncountable. However, quantifier elimination
removes all quantifiers and thus the need for searching in the domain. If quantifier
elimination can be done algorithmically and if the set of quantifier-free sentences is
decidable in the given theory, then the entire first-order theory is decidable.

Quantifier elimination in ACF. The theory ACF of algebraically closed fields has
quantifier elimination in the language Lr and it is decidable. Furthermore, each theory
ACFp of algebraically closed fields of characteristic p (prime or zero) has quantifier
elimination in Lr and they are all complete and decidable.

In particular every sentence such as ∀x : px = 0, where p is a fixed integer, is
equivalent to a quantifier-free formula ψ, but in a sentence every variable is bound by
a quantifier, so ψ cannot contain any variables. It follows that any such ψ is a boolean
formula over variable-less sentences in the language of rings. These are all of the form
m = n for integers m,n. The sentence ∀x : px = 0, for example, is equivalent to p = 0.
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The boolean combination of these sentences points out exactly which characteristics
make the sentence true.

The reason why ACF is not complete is because there exist algebraically closed
fields of different characteristics. So a sentence like 2 = 0 is neither correct (there exist
algebraically closed fields where this is false) nor is its negation correct (there also exist
algebraically closed fields where 2 = 0 is true). The completeness of ACFp shows that
these are the only type of sentence obstructing the completeness of ACF.

The fact that existential quantifiers can be eliminated in the language of rings,
given the theory of algebraically closed fields, implies that the image of a coordinate
projection of any constructible set is constructible:

Chevalley’s Theorem. Over an algebraically closed field, a projection of a con-
structible set is constructible.

The goal of Chapter 3 is to prove that the theory of real-closed fields, likewise, has
quantifier elimination in the language of ordered rings. This entails that projections
of semialgebraic sets are semialgebraic and many other important theorems in real
algebraic geometry, which are the subject of Chapter 4.


